Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 051001, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364124

RESUMO

Dark matter is typically assumed not to couple to the photon at tree level. While annihilation to photons through quark loops is often considered in indirect detection searches, such loop-level effects are usually neglected in direct detection, as they are typically subdominant to tree-level dark-matter-nucleus scattering. However, when dark matter is lighter than around 100 MeV, it carries so little momentum that it is difficult to detect with nuclear recoils at all. We show that loops of low-energy hadronic states can generate an effective dark-matter-photon coupling, and thus lead to scattering with electrons even in the absence of tree-level dark-matter-electron scattering. For light mediators, this leads to an effective fractional electric charge that may be very strongly constrained by astrophysical observations. Current and upcoming searches for dark-matter-electron scattering can thus set limits on dark-matter-proton interactions down to 1 MeV and below.

2.
Phys Rev Lett ; 124(5): 051801, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083929

RESUMO

If the length scale of possible extra dimensions is large enough, the effective Planck scale is lowered such that microscopic black holes could be produced in collisions of high-energy particles at colliders. These black holes evaporate through Hawking radiation of a handful of energetic particles drawn from the set of all kinematically and thermally allowed degrees of freedom, including dark matter. Here, we perform the first numerical black hole spectroscopic study of the dark sector. We find that if the next generation of colliders can produce microscopic black holes, then missing momentum signatures can reveal the existence of any new light (≲10 TeV) particle, regardless of the strength of its coupling to the standard model, even if there exists no such nongravitational coupling at all.

3.
Eur Phys J C Part Fields ; 79(1): 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872966

RESUMO

We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison. Our analysis includes up-to-date likelihood functions for the dark matter relic density, invisible Higgs decays, and direct and indirect searches for weakly-interacting dark matter including the latest XENON1T data. We also account for important uncertainties arising from the local density and velocity distribution of dark matter, nuclear matrix elements relevant to direct detection, and Standard Model masses and couplings. In all Higgs portal models, we find parameter regions that can explain all of dark matter and give a good fit to all data. The case of vector dark matter requires the most tuning and is therefore slightly disfavoured from a Bayesian point of view. In the case of fermionic dark matter, we find a strong preference for including a CP-violating phase that allows suppression of constraints from direct detection experiments, with odds in favour of CP violation of the order of 100:1. Finally, we present DDCalc 2.0.0, a tool for calculating direct detection observables and likelihoods for arbitrary non-relativistic effective operators.

4.
Phys Rev Lett ; 119(20): 201801, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219351

RESUMO

We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

5.
Phys Rev Lett ; 114(8): 081302, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768751

RESUMO

Broad disagreement persists between helioseismological observables and predictions of solar models computed with the latest surface abundances. Here we show that most of these problems can be solved by the presence of asymmetric dark matter coupling to nucleons as the square of the momentum q exchanged in the collision. We compute neutrino fluxes, small frequency separations, surface helium abundances, sound speed profiles, and convective zone depths for a number of models, showing more than a 6σ preference for q^{2} models over others, and over the standard solar model. The preferred mass (3 GeV) and reference dark matter-nucleon cross section (10^{-37} cm^{2} at q_{0}=40 MeV) are within the region of parameter space allowed by both direct detection and collider searches.

6.
Phys Rev Lett ; 113(9): 091103, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25215971

RESUMO

The IceCube experiment has recently reported the observation of 28 high-energy (>30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this Letter, we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (αe:αµâˆ¶ατ)⊕. Although the 7∶21 track-to-shower ratio is naively favored for the canonical (1∶1∶1)⊕ at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E(-2) energy spectrum, (1∶1∶1)⊕ at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1∶1∶1)⊕ at Earth at 3σ C.L. Indeed, with the recently released 3-yr data, that flavor composition is excluded at 92% C.L. The best fit is obtained for (1∶0∶0)⊕ at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...