Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 60(3): 386-397, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647646

RESUMO

Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.


Assuntos
Daphnia , Imageamento por Ressonância Magnética , Animais , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular
2.
Nat Methods ; 17(1): 64-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768059

RESUMO

Magnetic resonance imaging and spectroscopy are versatile methods for probing brain physiology, but their intrinsically low sensitivity limits the achievable spatial and temporal resolution. Here, we introduce a monolithically integrated NMR-on-a-chip needle that combines an ultra-sensitive 300 µm NMR coil with a complete NMR transceiver, enabling in vivo measurements of blood oxygenation and flow in nanoliter volumes at a sampling rate of 200 Hz.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Oxigênio/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Masculino , Ratos , Ratos Sprague-Dawley
3.
Angew Chem Int Ed Engl ; 58(43): 15372-15376, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31449724

RESUMO

Microcoil nuclear magnetic resonance (NMR) has been interfaced with digital microfluidics (DMF) and is applied to monitor organic reactions in organic solvents as a proof of concept. DMF permits droplets to be moved and mixed inside the NMR spectrometer to initiate reactions while using sub-microliter volumes of reagent, opening up the potential to follow the reactions of scarce or expensive reagents. By setting up the spectrometer shims on a reagent droplet, data acquisition can be started immediately upon droplet mixing and is only limited by the rate at which NMR data can be collected, allowing the monitoring of fast reactions. Here we report a cyclohexene carbonate hydrolysis in dimethylformamide and a Knoevenagel condensation in methanol/water. This is to our knowledge the first time rapid organic reactions in organic solvents have been monitored by high field DMF-NMR. The study represents a key first step towards larger DMF-NMR arrays that could in future serve as discovery platforms, where computer controlled DMF automates mixing/titration of chemical libraries and NMR is used to study the structures formed and kinetics in real time.

5.
Lab Chip ; 19(4): 641-653, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30648175

RESUMO

In recent years microcoils and related structures have been developed to increase the mass sensitivity of nuclear magnetic resonance spectroscopy, allowing this extremely powerful analytical technique to be extended to small sample volumes (<5 µl). In general, microchannels have been used to deliver the samples of interest to these microcoils; however, these systems tend to have large dead volumes and require more complex fluidic connections. Here, we introduce a two-plate digital microfluidic (DMF) strategy to interface small-volume samples with NMR microcoils. In this system, a planar microcoil is surrounded by a copper plane that serves as the counter-electrode for the digital microfluidic device, allowing for precise control of droplet position and shape. This feature allows for the user-determination of the orientation of droplets relative to the main axes of the shim stack, permitting improved shimming and a more homogeneous magnetic field inside the droplet below the microcoil, which leads to improved spectral lineshape. This, along with high-fidelity droplet actuation, allows for rapid shimming strategies (developed over decades for vertically oriented NMR tubes) to be employed, permitting the determination of reaction-product diffusion coefficients as well as quantitative monitoring of reactive intermediates. We propose that this system paves the way for new and exciting applications for in situ analysis of small samples by NMR spectroscopy.

6.
Sci Rep ; 7: 44670, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317887

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy enables non-invasive chemical studies of intact living matter. However, the use of NMR at the volume scale typical of microorganisms is hindered by sensitivity limitations, and experiments on single intact organisms have so far been limited to entities having volumes larger than 5 nL. Here we show NMR spectroscopy experiments conducted on single intact ova of 0.1 and 0.5 nL (i.e. 10 to 50 times smaller than previously achieved), thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Performing experiments with inductive ultra-compact (1 mm2) single-chip NMR probes, consisting of a low noise transceiver and a multilayer 150 µm planar microcoil, we demonstrate that the achieved limit of detection (about 5 pmol of 1H nuclei) is sufficient to detect endogenous compounds. Our findings suggest that single-chip probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales.

7.
Neuroimage ; 60(2): 1404-11, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22281672

RESUMO

With its unparalleled ability to safely generate high-contrast images of soft tissues, magnetic resonance imaging (MRI) has remained at the forefront of diagnostic clinical medicine. Unfortunately due to resolution limitations, clinical scans are most useful for detecting macroscopic structural changes associated with a small number of pathologies. Moreover, due to a longstanding inability to directly observe magnetic resonance (MR) signal behavior at the cellular level, such information is poorly characterized and generally must be inferred. With the advent of the MR microscope in 1986 came the ability to measure MR signal properties of theretofore unobservable tissue structures. Recently, further improvements in hardware technology have made possible the ability to visualize mammalian cellular structure. In the current study, we expand upon previous work by imaging the neuronal cell bodies and processes of human and porcine α-motor neurons. Complimentary imaging studies are conducted in pig tissue in order to demonstrate qualitative similarities to human samples. Also, apparent diffusion coefficient (ADC) maps were generated inside porcine α-motor neuron cell bodies and portions of their largest processes (mean=1.7 ± 0.5 µm²/ms based on 53 pixels) as well as in areas containing a mixture of extracellular space, microvasculature, and neuropil (0.59 ± 0.37 µm²/ms based on 33 pixels). Three-dimensional reconstruction of MR images containing α-motor neurons shows the spatial arrangement of neuronal projections between adjacent cells. Such advancements in imaging portend the ability to construct accurate models of MR signal behavior based on direct observation and measurement of the components which comprise functional tissues. These tools would not only be useful for improving our interpretation of macroscopic MRI performed in the clinic, but they could potentially be used to develop new methods of differential diagnosis to aid in the early detection of a multitude of neuropathologies.


Assuntos
Imageamento por Ressonância Magnética , Microscopia/métodos , Neurônios/citologia , Medula Espinal/citologia , Animais , Humanos , Suínos
8.
Neuroimage ; 57(4): 1458-65, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21575730

RESUMO

Thanks to its proven utility in both clinical and research applications, diffusion tensor tractography (DTT) is regularly employed as a means of delineating white-matter tracts. While successful efforts have been made to validate tractographic predictions, comparative methods which would permit the validation of such predictions at microscopic resolutions in complex biological tissues have remained elusive. In a previous study, we attempted to validate for the first time such predictions at microscopic resolutions in rat and pig spinal cords using a semi-quantitative analysis method. In the current study, we report improved quantitative analysis methods that can be used to determine the accuracy of DTT through comparative histology and apply these techniques for the first time to human tissue (spinal cord) samples. Histological images are down-sampled to resolutions equivalent to our magnetic resonance microscopy (MRM) and converted to binary maps using an automated thresholding tool. These maps (n=3) are co-registered to the MRM allowing us to quantify the agreement based on the number of pixels which contain tracts common to both imaging datasets. In our experiments, we find that-on average-89% of imaging pixels predicted by DTT to contain in-plane white-matter tract structure correspond to physical tracts identified by histology. In addition, angular analysis comparing the orientation of fiber tracts measured in histology to their corresponding in-plane primary eigenvector components is presented. Thus, as well as demonstrating feasibility in human tissue, we report a robust agreement between imaging datasets taken at microscopic resolution and confirm the primary eigenvector's role as a fundamental parameter with clear physical correlates in the microscopic regime.


Assuntos
Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Medula Espinal/anatomia & histologia , Humanos
9.
Lab Chip ; 7(3): 373-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17330169

RESUMO

NMR-microprobes based on solenoids and Helmholtz coils have been microfabricated and NMR-spectra of mammalian cells have successfully been taken. The microfabrication technology developed for these probes consists of three electroplated copper levels for low resistance coils and three SU-8 layers for the integration of microchannels. This technology allows fabricating solenoids, Helmholtz and planar coils on the same wafer. The coils have inner diameters in the range of 160 to 400 microm and detection volumes of 5 to 22 nL. The solenoid and Helmholtz coils show improved RF-field characteristics compared to a planar coil fabricated with the same process. The fabricated solenoid has a particularly low resistance of only 0.46 Omega at 300 MHz. Moreover, it is very sensitive and has a very uniform RF-field, but shows large line width. The Helmholtz coils are slightly less sensitive, but display a far narrower line width, and are therefore a good compromise. With a Helmholtz coil, a SNR of 620 has been measured after one scan on 9 nL pure water. An NMR-microprobe based on a Helmholtz coil has also been used to take spectra of CHO cells that have been concentrated in the sensitive region of the coil with a mechanical filter integrated into the channel.


Assuntos
Células , Espectroscopia de Ressonância Magnética/instrumentação , Animais , Eletricidade , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...