Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1747: 147056, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798452

RESUMO

Signaling between intestinal microbiota and the brain influences neurologic outcome in multiple forms of brain injury. The impact of gut microbiota following traumatic brain injury (TBI) has not been well established. Our objective was to compare TBI outcomes in specific pathogen-free mice with or without depletion of intestinal bacteria. Adult male C57BL6/J SPF mice (n = 6/group) were randomized to standard drinking water or ampicillin (1 g/L), metronidazole (1 g/L), neomycin (1 g/L), and vancomycin (0.5 g/L) (AMNV) containing drinking water 14 days prior to controlled cortical impact (CCI) model of TBI. 16S rRNA gene sequencing of fecal pellets was performed and alpha and beta diversity determined. Hippocampal neuronal density and microglial activation was assessed 72 h post-injury by immunohistochemistry. In addition, mice (n = 8-12/group) were randomized to AMNV or no treatment initiated immediately after CCI and memory acquisition (fear conditioning) and lesion volume assessed. Mice receiving AMNV had significantly reduced alpha diversity (p < 0.05) and altered microbiota community composition compared to untreated mice (PERMANOVA: p < 0.01). Mice receiving AMNV prior to TBI had increased CA1 hippocampal neuronal density (15.2 ± 1.4 vs. 8.8 ± 2.1 cells/0.1 mm; p < 0.05) and a 26.6 ± 6.6% reduction in Iba-1 positive cells (p < 0.05) at 72 h. Mice randomized to AMNV immediately after CCI had attenuated associative learning deficit on fear conditioning test (%freeze Cue: 63.7 ± 2.7% vs. 41.0 ± 5.1%, p < 0.05) and decreased lesion volume (27.2 ± 0.8 vs. 24.6 ± 0.7 mm3, p < 0.05). In conclusion, depletion of intestinal microbiota was consistent with a neuroprotective effect whether initiated before or after injury in a murine model of TBI. Further investigations of the role of gut microbiota in TBI are warranted.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Hipocampo/microbiologia , Hipocampo/patologia , Inflamação/microbiologia , Inflamação/patologia , Inflamação/fisiopatologia , Camundongos , Neurônios/microbiologia , Neurônios/patologia
2.
Antioxid Redox Signal ; 33(1): 1-19, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32103677

RESUMO

Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1α), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1α stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix-/- mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix-/- mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression.


Assuntos
Gastroenterite/etiologia , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mitofagia/genética , Animais , Antioxidantes/farmacologia , Sítios de Ligação , Biomarcadores , Linhagem Celular Tumoral , Colite/etiologia , Colite/metabolismo , Colite/patologia , Óxidos N-Cíclicos/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Gastroenterite/metabolismo , Gastroenterite/patologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Elementos de Resposta
3.
FASEB J ; 33(1): 1330-1346, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113881

RESUMO

The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. IBD is known to be multifactorial, but inflammatory signaling within the intestinal epithelium and a subsequent failure of the intestinal epithelial barrier have been shown to play essential roles in disease pathogenesis. CaMKIV is a multifunctional protein kinase associated with inflammation and cell cycle regulation. CaMKIV has been extensively studied in autoimmune diseases, but a role in idiopathic intestinal inflammation has not been described. In this study, active CaMKIV was highly expressed within the intestinal epithelium of humans with ulcerative colitis and wild-type (WT) mice with experimental induced colitis. Clinical disease severity directly correlates with CaMKIV activation, as does expression of proinflammatory cytokines and histologic features of colitis. In WT mice, CaMKIV activation is associated with increases in expression of 2 cell cycle proarrest signals: p53 and p21. Cell cycle arrest inhibits proliferation of the intestinal epithelium and ultimately results in compromised intestinal epithelial barrier integrity, further perpetuating intestinal inflammation during experimental colitis. Using a CaMKIV null mutant mouse, we demonstrate that a loss of CaMKIV protects against murine DSS colitis. Small molecules targeting CaMKIV activation may provide therapeutic benefit for patients with IBD.-Cunningham, K. E., Novak, E. A., Vincent, G., Siow, V. S., Griffith, B. D., Ranganathan, S., Rosengart, M. R., Piganelli, J. D., Mollen, K. P. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Colite/enzimologia , Colite/patologia , Mucosa Intestinal/patologia , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Colite/induzido quimicamente , Colite Ulcerativa/enzimologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sulfato de Dextrana/toxicidade , Ativação Enzimática , Humanos , Mucosa Intestinal/enzimologia , Camundongos , Camundongos Knockout , Transdução de Sinais
4.
Antioxidants (Basel) ; 6(4)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104232

RESUMO

Oxidative stress and persistent inflammation are exaggerated through chronic over-nutrition and a sedentary lifestyle, resulting in insulin resistance. In type 2 diabetes (T2D), impaired insulin signaling leads to hyperglycemia and long-term complications, including metabolic liver dysfunction, resulting in non-alcoholic fatty liver disease (NAFLD). The manganese metalloporphyrin superoxide dismustase (SOD) mimetic, manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnP), is an oxidoreductase known to scavenge reactive oxygen species (ROS) and decrease pro-inflammatory cytokine production, by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. We hypothesized that targeting oxidative stress-induced inflammation with MnP would assuage liver complications and enhance insulin sensitivity and glucose tolerance in a high-fat diet (HFD)-induced mouse model of T2D. During 12 weeks of feeding, we saw significant improvements in weight, hepatic steatosis, and biomarkers of liver dysfunction with redox modulation by MnP treatment in HFD-fed mice. Additionally, MnP treatment improved insulin sensitivity and glucose tolerance, while reducing serum insulin and leptin levels. We attribute these effects to redox modulation and inhibition of hepatic NF-κB activation, resulting in diminished ROS and pro-inflammatory cytokine production. This study highlights the importance of controlling oxidative stress and secondary inflammation in obesity-mediated insulin resistance and T2D. Our data confirm the role of NF-κB-mediated inflammation in the development of T2D, and demonstrate the efficacy of MnP in preventing the progression to disease by specifically improving liver pathology and hepatic insulin resistance in obesity.

5.
J Biol Chem ; 291(19): 10184-200, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26969166

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is the primary regulator of mitochondrial biogenesis and was recently found to be highly expressed within the intestinal epithelium. PGC1α is decreased in the intestinal epithelium of patients with inflammatory bowel disease, but its role in pathogenesis is uncertain. We now hypothesize that PGC1α protects against the development of colitis and helps to maintain the integrity of the intestinal barrier. We selectively deleted PGC1α from the intestinal epithelium of mice by breeding a PGC1α(loxP/loxP) mouse with a villin-cre mouse. Their progeny (PGC1α(ΔIEC) mice) were subjected to 2% dextran sodium sulfate (DSS) colitis for 7 days. The SIRT1 agonist SRT1720 was used to enhance PGC1α activation in wild-type mice during DSS exposure. Mice lacking PGC1α within the intestinal epithelium were more susceptible to DSS colitis than their wild-type littermates. Pharmacologic activation of PGC1α successfully ameliorated disease and restored mitochondrial integrity. These findings suggest that a depletion of PGC1α in the intestinal epithelium contributes to inflammatory changes through a failure of mitochondrial structure and function as well as a breakdown of the intestinal barrier, which leads to increased bacterial translocation. PGC1α induction helps to maintain mitochondrial integrity, enhance intestinal barrier function, and decrease inflammation.


Assuntos
Colite/metabolismo , Mucosa Intestinal/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Translocação Bacteriana/efeitos dos fármacos , Translocação Bacteriana/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética
6.
Mol Cancer ; 11: 76, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23043612

RESUMO

Serum lactate dehydrogenase (LDH) is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS), we subsequently determined using tissue microarray (TMA) analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT) 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy.


Assuntos
Glicólise , Melanoma/metabolismo , Fosforilação Oxidativa , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/sangue , L-Lactato Desidrogenase/sangue , Melanoma/sangue , Melanoma/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Estadiamento de Neoplasias , Nevo/metabolismo , Fatores Acopladores da Fosforilação Oxidativa/metabolismo
7.
PLoS One ; 7(8): e40690, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912665

RESUMO

The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS) has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS) has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC) that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α), and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma.


Assuntos
Melanoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...