Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37931031

RESUMO

Electrochemically active iron oxide nanotubes formed by anodization are of high interest as battery components in various battery systems due to their 1D geometry, offering high volume expansion tolerance and applications without the use of binders and conductive additives. This work takes a step forward toward understanding lithium-ion storage in 1D nanotubes through the analysis of differential capacity plots d(Q - Q0)·dE-1 supported by in situ Raman spectroscopy observations. The iron oxide nanotubes were synthesized by anodizing polycrystalline iron and subsequently modified by thermal treatment in order to control the degree of crystallinity and the ratio of hematite (Fe2O3) to magnetite (Fe3O4). The electrochemical fingerprints revealed a quasi-reversible lithiation/delithiation process through Li2O formation. Significant improvement in electrochemical performance was found to be related to the high degree of crystallinity and the increase of the hematite (Fe2O3) to magnetite (Fe3O4) ratio. In situ mechanistic studies revealed a reversible reduction of iron oxide to metallic iron simultaneously with Li2O formation.

2.
Micromachines (Basel) ; 13(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363871

RESUMO

Commercial titania photocatalyst­P25 was chosen for an antifungal property examination due to it exhibiting one of the highest photocatalytic activities among titania photocatalysts. Titania P25 was homogenized first (HomoP25) and then annealed at different temperatures. Additionally, HomoP25 was modified with 0.5 wt% or 2.0 wt% of platinum by a photodeposition method. The obtained samples were characterized by diffuse-reflectance spectroscopy (DRS), X-ray photoabsorption spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy. Moreover, photocatalytic activity was tested for methanol dehydrogenation under UV/vis irradiation. The spore-destroying effect of photocatalysts was investigated against two mold fungal species, i.e., Aspergillus fumigatus and Aspergillus niger. Both the mycelium growth and API ZYM (estimation of enzymatic activity) tests were applied for the assessment of antifungal effect. It was found that annealing caused a change of surface properties of the titania samples, i.e., an increase in the noncrystalline part, a growth of particles and enhanced oxygen adsorption on its surface, which resulted in an increase in both the hydrogen evolution rate and the antifungal effect. Titania samples annealed at 300−500 °C were highly active during 60-min UV/vis irradiation, inhibiting the germination of both fungal spores, whereas titania modification with platinum (0.5 and 2.0 wt%) had negligible effect, despite being highly active for hydrogen evolution. The control experiments revealed the lack of titania activity in the dark, as well as high resistance of fungi for applied UV/vis irradiation in the absence of photocatalysts. Moreover, the complete inhibition of 19 hydrolases, secreted by both tested fungi, was noted under UV/vis irradiation on the annealed P25 sample. It is proposed that titania photocatalysts of large particle sizes (>150 nm) and enriched surface with oxygen might efficiently destroy fungal structures under mild irradiation conditions and, thus, be highly promising as covering materials for daily products.

3.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35158338

RESUMO

Secondary lithium-ion batteries are restricted in large-scale applications including power grids and long driving electric vehicles owing to the low specific capacity of conventional intercalation anodes possessing sluggish Li-ion diffusion kinetics. Herein, we demonstrate an unusual pseudocapacitive lithium-ion storage on defective Co3O4nanosheet anodes for high-performance rechargeable batteries. Cobalt-oxide nanosheets presented here composed of various defects including vacancies, dislocations and grain boundaries. Unique 2D holey microstructure enabled efficient charge transport as well as provided room for volume expansions associated with lithiation-delithiation process. These defective anodes exhibited outstanding pseudocapacitance (up to 87%), reversible capacities (1490 mAh g-1@ 25 mA g-1), rate capability (592 mAh g-1@ 30 A g-1), stable cycling (85% after 500 cycles @ 1 A g-1) and columbic efficiency (∼100%). Exceptional Li-ion storage phenomena in defective Co3O4nanosheets is accredited to the pseudocapacitive nature of conversion reaction resulting from ultrafast Li-ion diffusion through various crystal defects. The demonstrated approach of defect-induced pseudocapacitance can also be protracted for various low-cost and/or eco-friendly transition metal-oxides for next-generation rechargeable batteries.

4.
ChemSusChem ; 15(6): e202102562, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35060341

RESUMO

Despite the proposed safety, performance, and cost advantages, practical implementation of Mg-Li hybrid batteries is limited due to the unavailability of reliable cathodes compatible with the dual-ion system. Herein, a high-performance Mg-Li dual ion battery based upon cobalt-doped TiO2 cathode was developed. Extremely pseudocapacitance-type Ti1-x Cox O2-y nanosheets consist of an optimum 3.57 % Co-atoms. This defective cathode delivered exceptional pseudocapacitance (maximum of 93 %), specific capacities (386 mAh g-1 at 25 mA g-1 ), rate performance (191 mAh g-1 at 1 A g-1 ), cyclability (3000 cycles at 1 A g-1 ), and coulombic efficiency (≈100 %) and fast charging (≈11 min). This performance was superior to the TiO2 -based Mg-Li dual-ion battery cathodes reported earlier. Mechanistic studies revealed dual-ion intercalation pseudocapacitance with negligible structural changes. Excellent electrochemical performance of the cation-doped TiO2 cathode was credited to the rapid pseudocapacitance-type Mg/Li-ion diffusion through the disorder generated by lattice distortions and oxygen vacancies. Ultrathin nature, large surface area, 2D morphology, and mesoporosity also contributed as secondary factors facilitating superior electrode-electrolyte interfacial kinetics. The demonstrated method of pseudocapacitance-type Mg-Li dual-ion intercalation by introducing lattice distortions/oxygen vacancies through selective doping can be utilized for the development of several other potential electrodes for high-performance Mg-Li dual-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...