Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408665

RESUMO

The intensive research for hybridization probes based on organic molecules with fluorogenic properties is currently attracting particular attention due to their potential to efficiently recognize different DNA conformations and the local environment. However, most established organic chromophores do not meet the requirements of this task, as they do not exhibit good brightness in aqueous buffer media, develop aggregation and/or are not easily conjugated to oligodeoxynucleotides (ODNs) while keeping their photophysics intact. Herein, an important modification strategy was employed for a well-known fluorophore, 2-(4-(diethylamino)phenyl)-3-hydroxychromone (dEAF). Although this push-pull dye absorbs intensively in the visible range and shows emission with large Stokes shifts in all organic solvents, it is strongly quenched in water. This Achilles' heel prompted us to implement a new strategy to obtain a series of dyes that retain all the photophysical features of dEAF in water, conjugate readily with oligonucleotides, and furthermore demonstrate sensitivity to hydration, thus paving the way for a high-performance fluorogenic DNA hybridization probe.


Assuntos
DNA , Água , Cromonas , Sondas de DNA , Corantes Fluorescentes
2.
Nucleic Acids Res ; 49(12): e72, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872373

RESUMO

The sensitivity of FRET-based sensing is usually limited by the spectral overlaps of the FRET donor and acceptor, which generate a poor signal-to-noise ratio. To overcome this limitation, a quenched donor presenting a large Stokes shift can be combined with a bright acceptor to perform Dark Resonance Energy Transfer (DRET). The consequent fluorogenic response from the acceptor considerably improves the signal-to-noise ratio. To date, DRET has mainly relied on a donor that is covalently bound to the acceptor. In this context, our aim was to develop the first intermolecular DRET pair for specific sensing of nucleic acid sequences. To this end, we designed DFK, a push-pull probe based on a fluorenyl π-platform that is strongly quenched in water. DFK was incorporated into a series of oligonucleotides and used as a DRET donor with Cy5-labeled complementary sequences. In line with our expectations, excitation of the dark donor in the double-labeled duplex switched on the far-red Cy5 emission and remained free of cross-excitation. The DRET mechanism was supported by time-resolved fluorescence measurements. This concept was then applied with binary probes, which confirmed the distance dependence of DRET as well as its potency in detecting sequences of interest with low background noise.


Assuntos
Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Oligonucleotídeos/química
3.
Chemistry ; 27(4): 1364-1373, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32767410

RESUMO

In this work, we report on the Photoinduced Electron Transfer (PET) reaction between a donor (adenine analogue) and an acceptor (3-methoxychromone dye, 3MC) in the context of designing efficient fluorescent probes as DNA sensors. Firstly, Gibbs energy was investigated in disconnected donor-acceptor systems by Rehm-Weller equation. The oxidation potential of the adenine derivative was responsible for exergonicity of the PET reaction in separated combinations. Then, the PET reaction in donor-π-acceptor conjugates was investigated using steady-state fluorescence spectroscopy, acid-mediated PET inhibition and transient absorption techniques. In conjugated systems, PET is a favorable pathway of fluorescent quenching when an electron-rich adenine analogue (d7A) was connected to the fluorophore (3MC). We found that formation of ground-state complexes even at nm concentration range dominated the dye photophysics and generated poorly emissive species likely through intermolecular PET from d7A to 3MC. On the other hand, solution acidification disrupts complexation and turns on the dye emission. Bridging an electron-poor adenine analogue with high oxidation potential (8 d7A) to 3MC presenting low reduction potential is another alternative to prevent complex formation and produce highly emissive monomer conjugates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...