Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 183(22): 6499-508, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11673417

RESUMO

Helicobacter pylori, a gram-negative bacterium associated with gastritis, peptic ulceration, and gastric adenocarcinoma in humans, secretes a protein toxin, VacA, that causes vacuolar degeneration of epithelial cells. Several different families of H. pylori vacA alleles can be distinguished based on sequence diversity in the "middle" region (i.e., m1 and m2) and in the 5' end of the gene (i.e., s1 and s2). Type s2 VacA toxins contain a 12-amino-acid amino-terminal hydrophilic segment, which is absent from type s1 toxins. To examine the functional properties of VacA toxins containing this 12-amino-acid segment, we analyzed a wild-type s1/m1 VacA and a chimeric s2/m1 VacA protein. Purified s1/m1 VacA from H. pylori strain 60190 induced vacuolation in HeLa and Vero cells, whereas the chimeric s2/m1 toxin (in which the s1 sequence of VacA from strain 60190 was replaced with the s2 sequence from strain Tx30a) lacked detectable cytotoxic activity. Type s1/m1 VacA from strain 60190 formed membrane channels in a planar lipid bilayer assay at a significantly higher rate than did s2/m1 VacA. However, membrane channels formed by type s1 VacA and type s2 VacA proteins exhibited similar anion selectivities (permeability ratio, P(Cl)/P(Na) = 5). When an equimolar mixture of the chimeric s2/m1 toxin and the wild-type s1/m1 toxin was added to HeLa cells, the chimeric toxin completely inhibited the activity of the s1/m1 toxin. Thus, the s2/m1 toxin exhibited a dominant-negative phenotype similar to that of a previously described mutant toxin, VacA-(Delta6-27). Immunoprecipitation experiments indicated that both s2/m1 VacA and VacA-(Delta6-27) could physically interact with a c-myc epitope-tagged s1/m1 VacA, which suggests that the dominant-negative phenotype results from the formation of heterooligomeric VacA complexes with defective functional activity. Despite detectable differences in the channel-forming activities and cytotoxic properties of type s1 and type s2 VacA proteins, the conservation of type s2 sequences in many H. pylori isolates suggests that type s2 VacA proteins retain an important biological activity.


Assuntos
Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Helicobacter pylori/metabolismo , Canais Iônicos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chlorocebus aethiops , Citotoxinas/química , Citotoxinas/genética , Genótipo , Células HeLa , Helicobacter pylori/patogenicidade , Humanos , Canais Iônicos/química , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Células Vero
2.
Infect Immun ; 69(7): 4329-36, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11401970

RESUMO

Helicobacter pylori vacuolating cytotoxin (VacA) is a secreted protein that induces vacuolation of epithelial cells. To study VacA structure and function, we immunized mice with purified type s1-m1 VacA from H. pylori strain 60190 and generated a panel of 10 immunoglobulin G1kappa anti-VacA monoclonal antibodies. All of the antibodies reacted with purified native VacA but not with denatured VacA, suggesting that these antibodies react with conformational epitopes. Seven of the antibodies reacted with both native and acid-treated VacA, which suggests that epitopes present on both oligomeric and monomeric forms of the toxin were recognized. Two monoclonal antibodies, both reactive with epitopes formed by amino acids in the carboxy-terminal portion of VacA (amino acids 685 to 821), neutralized the cytotoxic activity of type s1-m1 VacA when toxin and antibody were mixed prior to cell contact but failed to neutralize the cytotoxic activity of type s1-m2 VacA. Only 3 of the 10 antibodies consistently recognized type s1-m1 VacA toxins from multiple H. pylori strains, and none of the antibodies recognized type s2-m2 VacA toxins. These results indicate that there is considerable antigenic diversity among VacA toxins produced by different H. pylori strains.


Assuntos
Variação Antigênica/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Helicobacter pylori/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Proteínas Recombinantes de Fusão/imunologia
3.
J Biol Chem ; 274(53): 37736-42, 1999 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-10608833

RESUMO

Most Helicobacter pylori strains secrete a toxin (VacA) that causes structural and functional alterations in epithelial cells and is thought to play an important role in the pathogenesis of H. pylori-associated gastroduodenal diseases. The amino acid sequence, ultrastructural morphology, and cellular effects of VacA are unrelated to those of any other known bacterial protein toxin, and the VacA mechanism of action remains poorly understood. To analyze the functional role of a unique strongly hydrophobic region near the VacA amino terminus, we constructed an H. pylori strain that produced a mutant VacA protein (VacA-(Delta6-27)) in which this hydrophobic segment was deleted. VacA-(Delta6-27) was secreted by H. pylori, oligomerized properly, and formed two-dimensional lipid-bound crystals with structural features that were indistinguishable from those of wild-type VacA. However, VacA-(Delta6-27) formed ion-conductive channels in planar lipid bilayers significantly more slowly than did wild-type VacA, and the mutant channels were less anion-selective. Mixtures of wild-type VacA and VacA-(Delta6-27) formed membrane channels with properties intermediate between those formed by either isolated species. VacA-(Delta6-27) did not exhibit any detectable defects in binding or uptake by HeLa cells, but this mutant toxin failed to induce cell vacuolation. Moreover, when an equimolar mixture of purified VacA-(Delta6-27) and purified wild-type VacA were added simultaneously to HeLa cells, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. A dominant negative effect also was observed when HeLa cells were co-transfected with plasmids encoding wild-type and mutant toxins. We propose a model in which the dominant negative effects of VacA-(Delta6-27) result from protein-protein interactions between the mutant and wild-type VacA proteins, thereby resulting in the formation of mixed oligomers with defective functional activity.


Assuntos
Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Mutação , Vacúolos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Células HeLa , Humanos , Canais Iônicos/fisiologia , Potenciais da Membrana , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...