Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 439: 108895, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837701

RESUMO

The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.


Assuntos
Implantes Cocleares , Surdez , Cobaias , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Gânglio Espiral da Cóclea/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nervo Coclear , Audição , Cóclea
2.
Front Mol Neurosci ; 15: 935111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226314

RESUMO

Severe hearing loss or deafness is often caused by cochlear hair cell loss and can be mitigated by a cochlear implant (CI). CIs target the auditory nerve, consisting of spiral ganglion cells (SGCs), which degenerate gradually, following hair cell loss. In animal models, it has been established that treatment with the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) reduce SGC degeneration. In this study, we aimed to investigate whether treatment with both BDNF and NT-3 (Cocktail) is superior to treatment with each neurotrophin separately regarding cell preservation and neural responsiveness to electrical stimulation. To this end, deafened guinea pigs received neurotrophic treatment in their right ear via a gelatin sponge on the perforated round window membrane, followed by cochlear implantation 4 weeks later in the same ear for electrophysiological recordings to various stimulation paradigms. Normal-hearing and deafened untreated guinea pigs were included as positive and negative controls, respectively. Substantial SGC loss occurred in all deafened animals. Each of the neurotrophic treatments led to enhanced SGC survival mainly in the basal turn of the cochlea, gradually decreasing toward the apex. The Cocktail treatment resulted in the highest SGC survival in the treated ear, followed by BDNF, with the least protection of SGCs following NT-3 treatment. Survival of the SGC's peripheral processes (PPs) followed the same trend in response to the treatment. However, survival of SGCs and PPs in the contralateral untreated ears was also highest in the Cocktail group. Consequently, analysis of the ratio between the treated and untreated ears showed that the BDNF group, which showed low SGC survival in the untreated ear, had the highest relative SGC survival of the three neurotrophin-treated groups. Neurotrophic treatment had positive effects in part of the electrically evoked compound action-potential recording paradigms. These effects were only observed for the BDNF or Cocktail treatment. We conclude that treatment with either BDNF or a cocktail of BDNF and NT-3 is preferred to NT-3 alone. Furthermore, since the Cocktail treatment resulted in better electrophysiological responsiveness and overall higher SGC survival than BDNF alone, we are inclined to recommend the Cocktail treatment rather than BDNF alone.

3.
Brain Sci ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35053747

RESUMO

We investigated whether treatment with brain-derived neurotrophic factor (BDNF), which is known to protect spiral ganglion cells (SGCs), could also protect hair cells (HCs) and supporting cells (SCs) in the organ of Corti of a guinea pig model of sensorineural hearing loss. Hearing loss was induced by administration of kanamycin/furosemide and two BDNF treatments were performed: (1) by gelatin sponge (BDNF-GS) with acute cochlear implantation (CI), and (2) through a mini-osmotic pump (BDNF-OP) with chronic CI. Outer HCs (OHCs), inner HCs (IHCs), Border, Phalangeal, Pillar, Deiters', and Hensen's cells were counted. The BDNF-GS cochleas had significantly fewer OHCs compared to the untreated ones, while the IHC and SC numbers did not differ between treated and untreated cochleas. The BDNF-OP group showed similar cell numbers to the untreated group. SGC packing density was not correlated with the total number of SCs for either BDNF group. Our data suggest that: (1) BDNF does not prevent cell death in the organ of Corti, and that the protection of SGCs could result from a direct targeting by BDNF; (2) BDNF might induce a different function/activity of the remaining cells in the organ of Corti (independently from cell number).

4.
Hear Res ; 400: 108114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271438

RESUMO

Treatment with neurotrophins prevents degeneration of spiral ganglion cells (SGCs) after severe hair cell loss. In a previous study we demonstrated a long-lasting effect with brain-derived neurotrophic factor (BDNF) after cessation of treatment. In that study the survival of the SGC cell bodies was examined. Here we address the question whether their peripheral processes and central processes (axons) were protected by this treatment as well in the cochleas of the aforementioned study. Guinea pigs were deafened by co-administration of kanamycin and furosemide. Two weeks after deafening the right cochleas were implanted with an intracochlear electrode array combined with a cannula connected to an osmotic pump filled with BDNF solution. Four weeks later the treatment was stopped by surgically removing the osmotic pump. At that point, or another four or eight weeks later, the animals were sacrificed for histological analysis. Control groups consisted of normal-hearing animals, and three groups of deafened animals: two-weeks-deaf untreated animals, and six- and fourteen-weeks-deaf sham-treated animals. Cochleas were processed for analysis of: (1) the myelinated portion of peripheral processes in the osseous spiral lamina, (2) the cell bodies in Rosenthal's canal, and (3) axons in the internal acoustic meatus. Packing densities and cross-sectional areas were determined using light microscopy. Up to eight weeks after treatment cessation the numbers of peripheral processes and axons were significantly higher than in untreated cochleas of control animals. Whereas the numbers of cell bodies and axons were similar to those at the start of treatment, the peripheral processes were significantly less well preserved. This smaller protective effect was found mainly in the apical turns. Strategies to prevent SGC degeneration after hair cell loss should consider the differential effects on the various neural elements.


Assuntos
Surdez , Gânglio Espiral da Cóclea , Animais , Axônios , Fator Neurotrófico Derivado do Encéfalo , Corpo Celular , Sobrevivência Celular , Cóclea/patologia , Surdez/patologia , Cobaias , Degeneração Neural , Gânglio Espiral da Cóclea/patologia
5.
Brain Sci ; 10(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126525

RESUMO

In deaf subjects using a cochlear implant (CI) for hearing restoration, the auditory nerve is subject to degeneration, which may negatively impact CI effectiveness. This nerve degeneration can be reduced by neurotrophic treatment. Here, we compare the preservative effects of the naturally occurring tyrosine receptor kinase B (TrkB) agonist brain-derived neurotrophic factor (BDNF) and the small-molecule TrkB agonist 7,8,3'-trihydroxyflavone (THF) on the auditory nerve in deafened guinea pigs. THF may be more effective than BDNF throughout the cochlea because of better pharmacokinetic properties. The neurotrophic compounds were delivered by placement of a gelatin sponge on the perforated round window membrane. To complement the histology of spiral ganglion cells (SGCs), electrically evoked compound action potential (eCAP) recordings were performed four weeks after treatment initiation. We analyzed the eCAP inter-phase gap (IPG) effect and measures derived from pulse-train evoked eCAPs, both indicative of SGC healthiness. BDNF but not THF yielded a significantly higher survival of SGCs in the basal cochlear turn than untreated controls. Regarding IPG effect and pulse-train responses, the BDNF-treated animals exhibited more normal responses than both untreated and THF-treated animals. We have thus confirmed the protective effect of BDNF, but we have not confirmed previously reported protective effects of THF with our clinically applicable delivery method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...