Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(22): 5896-5904, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38805687

RESUMO

Herein, we demonstrate triplet excited-state population in a conformationally rigid perylenediimide trimer (PDI-T) via intramolecular symmetry-breaking charge separation (SB-CS) at the single-molecule level. The single-molecule fluorescence intensity trajectories of PDI-T in nonpolar polystyrene matrix (ε = 2.60) exhibit prolonged fluorescence with infrequent dark states, representing the triplet and/or the charge transfer states. In contrast, in a poly(vinyl alcohol) matrix (ε = 7.80), erratic blinking dynamics resulting in low photon counts were observed, corroborating the feasibility of charge separation in a polar environment. In agreement with the single-molecule measurements, transient absorption spectroscopy of PDI-T reveals ultrafast SB-CS (τCS < 5 ps) in polar tetrahydrofuran (ε = 7.58) and acetone (ε = 20.70), with the population of the triplet excited-state through charge recombination. The current investigation shows the utility of rigid and weakly coupled molecular constructs in controlling triplet generation and SB-CS for potential applications in optoelectronic devices.

2.
Chemistry ; 30(29): e202400499, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38502668

RESUMO

We report the room temperature phosphorescence upon iodination on a crystalline eumelanin monomer with shielded hydroxyl moieties, ethyl 5,6-dimethoxyindole-2-carboxylate (DMICE). Ultrafast intersystem crossing (ISC) is observed in the iodinated (IDMICE) as well as brominated (BDMICE) analogues of the eumelanin monomer derivative in solution. The triplet quantum yields (φT) and intersystem crossing rates (kISC) of the halogenated eumelanin derivatives are φ T B D M I C E ${{\phi{} }_{T}^{BDMICE}}$ =25.4±1.1 %; k I S C B D M I C E ${{k}_{ISC}^{BDMICE}}$ =1.95×109 s-1 and φ T I D M I C E ${{\phi{} }_{T}^{IDMICE}}$ =59.1±1.6 %; k I S C I D M I C E = ${{k}_{ISC}^{IDMICE}=}$ 1.36×1010 s-1, as monitored using transient absorption spectroscopy. Theoretical calculations based on nuclear ensemble method reveal that computed kISC and spin-orbit coupling matrix elements for eumelanin derivatives are larger for IDMICE relative to BDMICE. The halogen and π-π interactions, with distinct excitonic coupling and higher ISC rate promote phosphorescence in IDMICE molecular crystals. Accessing triplet excited states and resultant photoluminescence through structural modification of eumelanin scaffolds paves way for exploring the versatility of eumelanin-inspired molecules as bio-functional materials.

3.
Chem Sci ; 13(8): 2331-2338, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310511

RESUMO

Eumelanin, a naturally occurring group of heterogeneous polymers/aggregates providing photoprotection to living organisms, consist of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks. Despite their prevalence in the animal world, the structure and therefore the mechanism behind the photoprotective broadband absorption and non-radiative decay of eumelanin remain largely unknown. As a small step towards solving the incessant mystery, DHI is crystallized in a non-protic solvent environment to obtain DHI crystals having a helical packing motif. The present approach reflects the solitary directional effect of hydrogen bonds between the DHI chromophores for generating the crystalline assembly and filters out any involvement of the surrounding solvent environment. The DHI single crystals having an atypical chiral packing motif (P212121 Sohncke space group) incorporate enantiomeric zig-zag helical stacks arranged in a herringbone fashion with respect to each other. Each of the zig-zag helical stacks originates from a bifurcated hydrogen bonding interaction between the hydroxyl substituents in adjacent DHI chromophores which act as the backbone structure for the helical assembly. Fragment-based excited state analysis performed on the DHI crystalline assembly demonstrates exciton delocalization along the DHI units that connect each enantiomeric helical stack while, within each stack, the excitons remain localized. Fascinatingly, over the time evolution for generation of single-crystals of the DHI-monomer, mesoscopic double-helical crystals are formed, possibly attributed to the presence of covalently connected DHI trimers in chloroform solution. The oligomeric DHI (in line with the chemical disorder model) along with the characteristic crystalline packing observed for DHI provides insights into the broadband absorption feature exhibited by the chromophore.

4.
ACS Omega ; 4(10): 14169-14178, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31508538

RESUMO

This study deals with the synthesis of a gliadin-stabilized gold quantum cluster (AuQC) for the encapsulation of curcumin (CUR) and its targeted delivery to the cancer cell. CUR is an anticancer drug containing a hydrophobic polyphenol derived from the rhizome of Curcuma longa. The utilization of CUR in cancer treatment is limited because of suboptimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve the bioavailability of CUR, we have encapsulated it into AuQCs stabilized by a proline-rich protein gliadin because proline-rich protein has the ability to bind a hydrophobic drug CUR. The encapsulation of CUR into the hydrophobic cavity of the protein was confirmed by various spectroscopic techniques. Compared to CUR alone, the encapsulated CUR was stable against degradation and showed higher pH stability up to pH 8.5. The encapsulation efficiency of CUR in AuQCs was calculated as 98%, which was much higher than the other reported methods. In vitro drug release experiment exhibited a controlled and pH-dependent CUR release over a period of 60 h. The encapsulated CUR-QCs exhibited less toxicity in the normal cell line (L929) and high toxicity in breast cancer (MDA-MB239). Thus, it can be used as a potential material for anticancer therapy and bioimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...