Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611467

RESUMO

Since sugarcane is semi-perennial, it has no escape from water stresses in the Brazilian Cerrado, and consequently, drought impacts plant growth and industrial quality. The objective of this study was to evaluate the morphophysiology and quality of the first ratoon of two sugarcane varieties submitted to irrigated and stressed treatments under field conditions. For the biometric characteristics, in general, significant decreases were observed under the stressed treatment for all periods, and only minor differences were detected between the studied cultivars. Physiological parameters decreased under stressed conditions, but to a different extent between the varieties. RB855536 was able to maintain a greater rate of transpiration. Productivity was reduced by 103 t ha-1 for variety RB855536 and 121 t ha-1 for RB867515, compared to plants with full irrigation during the dry period, but cane quality was similar in both genotypes. Measurements of physiological and morphological parameters may prove useful in the rapid identification of genotypes with greater tolerance to abiotic stress.

2.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079581

RESUMO

Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50-full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50-water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado.

3.
Plants (Basel) ; 10(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34451636

RESUMO

Quinoa stands out as an excellent crop in the Cerrado region for cultivation in the off-season or irrigated winter season. Here, we tested the effects of different water regimes on the agronomic characteristics, physiology, and grain quality of different elite quinoa genotypes under field conditions. The experiment was conducted under field conditions at Embrapa Cerrados (Planaltina, DF, Brazil). The experimental design was in randomized blocks, in a split-plot scheme, with four replications. The plots were composed of 18 quinoa genotypes and modified BRS Piabiru (the currently used genotype), and the split-plots were divided into 4 different water regimes. The following variables were evaluated: productivity and productivity per unit of applied water (PUAA), plant height, flavonoids, anthocyanins, gas exchange, chlorophyll, leaf proline, and relative water content. Our results showed that water regimes between 309 and 389 mm can be recommended for quinoa in the Cerrado region. CPAC6 and CPAC13 presented the highest yield and PUAA under high and intermediate WRs, and hence were the most suitable for winter growth under irrigation. CPAC17 is most suitable for off-season growth under rainfed conditions, as it presented the highest PUAA under the low WRs (247 and 150). CPAC9 stood out in terms of accumulation of flavonoids and anthocyanins in all WRs. Physiological analyses revealed different responses of the genotypes to water restriction, together with symptoms of stress under lower water regimes. Our study reinforces the importance of detailed analyses of the relationship between productivity, physiology, and water use when choosing genotypes for planting and harvest in different seasons.

4.
Front Plant Sci ; 10: 497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057593

RESUMO

Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways.

5.
PLoS One ; 13(5): e0198191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847587

RESUMO

Wild peanut relatives (Arachis spp.) are genetically diverse and were selected throughout evolution to a range of environments constituting, therefore, an important source of allelic diversity for abiotic stress tolerance. In particular, A. duranensis and A. stenosperma, the parents of the reference Arachis A-genome genetic map, show contrasting transpiration behavior under limited water conditions. This study aimed to build a comprehensive gene expression profile of these two wild species under dehydration stress caused by the withdrawal of hydroponic nutrient solution. For this purpose, roots of both genotypes were collected at seven time-points during the early stages of dehydration and used to construct cDNA paired-end libraries. Physiological analyses indicated initial differences in gas exchange parameters between the drought-tolerant genotype of A. duranensis and the drought-sensitive genotype of A. stenosperma. High-quality Illumina reads were mapped against the A. duranensis reference genome and resulted in the identification of 1,235 and 799 Differentially Expressed Genes (DEGs) that responded to the stress treatment in roots of A. duranensis and A. stenosperma, respectively. Further analysis, including functional annotation and identification of biological pathways represented by these DEGs confirmed the distinct gene expression behavior of the two contrasting Arachis species genotypes under dehydration stress. Some species-exclusive and common DEGs were then selected for qRT-PCR analysis, which corroborated the in silico expression profiling. These included genes coding for regulators and effectors involved in drought tolerance responses, such as activation of osmosensing molecular cascades, control of hormone and osmolyte content, and protection of macromolecules. This dataset of transcripts induced during the dehydration process in two wild Arachis genotypes constitute new tools for the understanding of the distinct gene regulation processes in these closely related species but with contrasting drought responsiveness. In addition, our findings provide insights into the nature of drought tolerance in wild germoplasm, which might be explored as novel sources of diversity and useful wild alleles to develop climate-resilient crop varieties.


Assuntos
Arachis/genética , Arachis/fisiologia , Secas , Arachis/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
6.
Genet Mol Biol ; 33(1): 78-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21637609

RESUMO

Dipteryx alata is a native fruit tree species of the cerrado (Brazilian savanna) that has great economic potential because of its multiple uses. Knowledge of how the genetic variability of this species is organized within and among populations would be useful for genetic conservation and breeding programs. We used nine simple sequence repeat (SSR) primers developed for Dipteryx odorata to evaluate the genetic structure of three populations of D. alata located in central Brazil based on a leaf sample analysis from 101 adults. The outcrossing rate was evaluated using 300 open-pollinated offspring from 25 seed-trees. Pollen dispersal was measured by parentage analysis. We used spatial genetic structure (SGS) to test the minimal distance for harvesting seeds in conservation and breeding programs. Our data indicate that the populations studied had a high degree of genetic diversity and population structure, as suggested by the high level of divergence among populations . The estimated outcrossing rate suggested a mixed mating system, and the intrapopulation fixation index was influenced by SGS. We conclude that seed harvesting for genetic conservation and breeding programs requires a minimum distance between trees of 196 m to avoid collecting seeds from related seed-trees.

7.
Genet. mol. biol ; 33(1): 78-85, 2010. graf, mapas
Artigo em Inglês | LILACS | ID: lil-566144

RESUMO

Dipteryx alata is a native fruit tree species of the cerrado (Brazilian savanna) that has great economic potential because of its multiple uses. Knowledge of how the genetic variability of this species is organized within and among populations would be useful for genetic conservation and breeding programs. We used nine simple sequence repeat (SSR) primers developed for Dipteryx odorata to evaluate the genetic structure of three populations of D. alata located in central Brazil based on a leaf sample analysis from 101 adults. The outcrossing rate was evaluated using 300 open-pollinated offspring from 25 seed-trees. Pollen dispersal was measured by parentage analysis. We used spatial genetic structure (SGS) to test the minimal distance for harvesting seeds in conservation and breeding programs. Our data indicate that the populations studied had a high degree of genetic diversity and population structure, as suggested by the high level of divergence among populations . The estimated outcrossing rate suggested a mixed mating system, and the intrapopulation fixation index was influenced by SGS. We conclude that seed harvesting for genetic conservation and breeding programs requires a minimum distance between trees of 196 m to avoid collecting seeds from related seed-trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...