Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(27): e2308141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38234100

RESUMO

Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.


Assuntos
Cisto Pancreático , Neoplasias Pancreáticas , Cisto Pancreático/diagnóstico , Cisto Pancreático/patologia , Humanos , Imunoensaio/métodos , Neoplasias Pancreáticas/diagnóstico , Medições Luminescentes/métodos , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Análise de Componente Principal/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Adv Mater ; 35(42): e2304102, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452695

RESUMO

A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.


Assuntos
Cistos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
3.
Nanoscale ; 15(25): 10808-10819, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37334549

RESUMO

Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 µm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.


Assuntos
Quitosana , Recém-Nascido , Humanos , Semicondutores , Celulose , Eletrônica
4.
Anal Bioanal Chem ; 414(18): 5657-5669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35410389

RESUMO

Early diagnosis in a premalignant (or pre-invasive) state represents the only chance for cure in neoplastic diseases such as pancreatic-biliary cancer, which are otherwise detected at later stages and can only be treated using palliative approaches, with no hope for a cure. Screening methods for the purpose of secondary prevention are not yet available for these cancers. Current diagnostic methods mostly rely on imaging techniques and conventional cytopathology, but they do not display adequate sensitivity to allow valid early diagnosis. Next-generation sequencing can be used to detect DNA markers down to the physical limit; however, this assay requires labeling and is time-consuming. The additional determination of a protein marker that is a predictor of aggressive behavior is a promising innovative approach, which holds the potential to improve diagnostic accuracy. Moreover, the possibility to detect biomarkers in blood serum offers the advantage of a noninvasive diagnosis. In this study, both the DNA and protein markers of pancreatic mucinous cysts were analyzed in human blood serum down to the single-molecule limit using the SiMoT (single-molecule assay with a large transistor) platform. The SiMoT device proposed herein, which exploits an inkjet-printed organic semiconductor on plastic foil, comprises an innovative 3D-printed sensing gate module, consisting of a truncated cone that protrudes from a plastic substrate and is compatible with standard ELISA wells. This 3D gate concept adds tremendous control over the biosensing system stability, along with minimal consumption of the capturing molecules and body fluid samples. The 3D sensing gate modules were extensively characterized from both a material and electrical perspective, successfully proving their suitability as detection interfaces for biosensing applications. KRAS and MUC1 target molecules were successfully analyzed in diluted human blood serum with the 3D sensing gate functionalized with b-KRAS and anti-MUC1, achieving a limit of detection of 10 zM and 40 zM, respectively. These limits of detection correspond to (1 ± 1) KRAS and (2 ± 1) MUC1 molecules in the 100 µL serum sample volume. This study provides a promising application of the 3D SiMoT platform, potentially facilitating the timely, noninvasive, and reliable identification of pancreatic cancer precursor cysts.


Assuntos
Cisto Pancreático , Proteínas Proto-Oncogênicas p21(ras) , Biomarcadores , Humanos , Cisto Pancreático/diagnóstico , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Pancreáticas , Plásticos , Impressão Tridimensional , Neoplasias Pancreáticas
5.
Nat Commun ; 12(1): 5842, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615870

RESUMO

Recent advancements in the field of electronics have paved the way to the development of new applications, such as tattoo electronics, where the employment of ultraconformable devices is required, typically achievable with a significant reduction in their total thickness. Organic materials can be considered enablers, owing to the possibility of depositing films with thicknesses at the nanometric scale, even from solution. However, available processes do not allow obtaining devices with thicknesses below hundreds of nanometres, thus setting a limit. Here, we show an all-organic field effect transistor that is less than 150 nm thick and that is fabricated through a fully solution-based approach. Such unprecedented thickness permits the device to conformally adhere onto nonplanar surfaces, such as human skin, and to be bent to a radius lower than 1 µm, thereby overcoming another limitation for field-effect transistors and representing a fundamental advancement in the field of ultrathin and tattoo electronics.

6.
ACS Appl Electron Mater ; 3(7): 3106-3113, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34485915

RESUMO

Biosensors are expected to revolutionize disease management through provision of low-cost diagnostic platforms for molecular and pathogenic detection with high sensitivity and short response time. In this context, there has been an ever-increasing interest in using electrolyte-gated field-effect transistors (EG-FETs) for biosensing applications owing to their expanding potential of being employed for label-free detection of a broad range of biomarkers with high selectivity and sensitivity while operating at sub-volt working potentials. Although organic semiconductors have been widely utilized as the channel in EG-FETs, primarily due to their compatibility with cost-effective low-temperature solution-processing fabrication techniques, alternative carbon-based platforms have the potential to provide similar advantages with improved electronic performances. Here, we propose the use of inkjet-printed polymer-wrapped monochiral single-walled carbon nanotubes (s-SWCNTs) for the channel of EG-FETs in an aqueous environment. In particular, we show that our EG-CNTFETs require only an hour of stabilization before producing a highly stable response suitable for biosensing, with a drastic time reduction with respect to the most exploited organic semiconductor for biosensors. As a proof-of-principle, we successfully employed our water-gated device to detect the well-known biotin-streptavidin binding event.

7.
Adv Mater ; 32(33): e2002329, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32648300

RESUMO

The increasing diffusion of portable and wearable technologies results in a growing interest in electronic devices having features such as flexibility, lightness-in-weight, transparency, and wireless operation. Organic electronics is proposed as a potential candidate to fulfill such needs, in particular targeting pervasive radio-frequency (RF) applications. Still, limitations in terms of device performances at RF, particularly severe when large-area and scalable fabrication techniques are employed, have largely precluded the achievement of such an appealing scenario. In this work, the rectification of an electromagnetic wave at 13.56 MHz with a fully inkjet printed polymer diode is demonstrated. The rectifier, a key enabling component of future pervasive wireless systems, is fabricated through scalable large-area methods on plastic. To provide a proof-of-principle demonstration of its future applicability, its adoption in powering a printed integrated polymer circuit is presented. The possibility of harvesting electrical power from RF waves and delivering it to a cheap flexible substrate through a simple printed circuitry paves the way to a plethora of appealing distributed electronic applications.

8.
Sci Rep ; 8(1): 8073, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795264

RESUMO

In this study, a novel approach to the fabrication of a multimodal temperature and force sensor on ultrathin, conformable and flexible substrates is presented. This process involves coupling a charge-modulated organic field-effect transistor (OCMFET) with a pyro/piezoelectric element, namely a commercial film of poly-vinylene difluoride (PVDF). The proposed device is able to respond to both pressure stimuli and temperature variations, demonstrating the feasibility of the approach for the development of low-cost, highly sensitive and conformable multimodal sensors. The overall thickness of the device is 1.2 µm, being thus able to conform to any surface (including the human body), while keeping its electrical performance. Furthermore, it is possible to discriminate between simultaneously applied temperature and pressure stimuli by coupling sensing surfaces made of poled and unpoled spin-coated PVDF-trifluoroethylene (PVDF-TrFE, a PVDF copolymer) with OCMFETs. This demonstrates the possibility of creating multimodal sensors that can be employed for applications in several fields, ranging from robotics to wearable electronics.

9.
Sensors (Basel) ; 18(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495366

RESUMO

Organic Field-Effect Transistors (OFETs) are attracting a rising interest for the development of novel kinds of sensing platforms. In this paper, we report about a peculiar sensor device structure, namely Organic Charge-Modulated Field-Effect Transistor (OCMFET), capable of operating at low voltages and entirely fabricated with large-area techniques, i.e., inkjet printing and chemical vapor deposition, that can be easily upscaled to an industrial size. Device fabrication is described, and statistical characterization of the basic electronic parameters is reported. As an effective benchmark for the application of large-area fabricated OCMFET to the biomedical field, its combination with pyroelectric materials and compressible capacitors is discussed, in order to employ the proposed device as a temperature pressure sensor. The obtained sensors are capable to operate in conditions which are relevant in the biomedical field (temperature in the range of 18.5-50 °C, pressure in the range of 10²-10³ Pa) with reproducible and valuable performances, opening the way for the fabrication of low-cost, flexible sensing platforms.


Assuntos
Técnicas Biossensoriais , Gases , Pressão , Impressão , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...