Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851710

RESUMO

Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1ß, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , SARS-CoV-2 , Transcriptoma , Renina , Proteômica , Proteínas Proto-Oncogênicas c-akt , COVID-19/genética
2.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563619

RESUMO

MicroRNAs (miRNAs) are important gene regulatory molecules involved in a broad range of cellular activities. Although the existence and functions of miRNAs are clearly defined and well established in eukaryotes, this is not always the case for those of viral origin. Indeed, the existence of viral miRNAs is the subject of intense controversy, especially those of RNA viruses. Here, we characterized the miRNA transcriptome of cultured human liver cells infected or not with either of the two Ebola virus (EBOV) variants: Mayinga or Makona; or with Reston virus (RESTV). Bioinformatic analyses revealed the presence of two EBOV-encoded miRNAs, miR-MAY-251 and miR-MAK-403, originating from the EBOV Mayinga and Makona variants, respectively. From the miRDB database, miR-MAY-251 and miR-MAK-403 displayed on average more than 700 potential human host target candidates, 25% of which had a confidence score higher than 80%. By RT-qPCR and dual luciferase assays, we assessed the potential regulatory effect of these two EBOV miRNAs on selected host mRNA targets. Further analysis of Panther pathways unveiled that these two EBOV miRNAs, in addition to general regulatory functions, can potentially target genes involved in the hemorrhagic phenotype, regulation of viral replication and modulation of host immune defense.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , MicroRNAs , Ebolavirus/genética , Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética
3.
Mol Cell Neurosci ; 88: 1-6, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29223600

RESUMO

Alzheimer's disease (AD) is marked by several cellular and molecular damage. Therefore, the therapeutic interest of multi-target molecules is increasingly justified. Polyphenols presenting multiple pharmacological effects would be more efficient. In this study, beneficial effects of trans ε-viniferin, a natural polyphenol were thus evaluated. This study reported that this stilbenoid (1) induced the disaggregation of amyloid ß (Aß) peptide and (2) rescued inflammation in murine primary neuronal cultures. These both effects are higher than those of resveratrol, and so, trans ε-viniferin could be a good therapeutic multi-target candidate.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/uso terapêutico , Benzofuranos/uso terapêutico , Neurônios/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo
4.
Stem Cell Reports ; 9(5): 1573-1587, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29033304

RESUMO

Human endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Epigênese Genética , Neovascularização Fisiológica , Transdução de Sinais , Animais , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/transplante , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transplante de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...