Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(19): 5682-90, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11341833

RESUMO

Cholinesterases use a Glu-His-Ser catalytic triad to enhance the nucleophilicity of the catalytic serine. We have previously shown by proton NMR that horse serum butyryl cholinesterase, like serine proteases, forms a short, strong hydrogen bond (SSHB) between the Glu-His pair upon binding mechanism-based inhibitors, which form tetrahedral adducts, analogous to the tetrahedral intermediates in catalysis [Viragh, C., et al. (2000) Biochemistry 39, 16200-16205]. We now extend these studies to human acetylcholinesterase, a 136 kDa homodimer. The free enzyme at pH 7.5 shows a proton resonance at 14.4 ppm assigned to an imidazole NH of the active-site histidine, but no deshielded proton resonances between 15 and 21 ppm. Addition of a 3-fold excess of the mechanism-based inhibitor m-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA) induced the complete loss of the 14.4 ppm signal and the appearance of a broad, deshielded resonance of equal intensity with a chemical shift delta of 17.8 ppm and a D/H fractionation factor phi of 0.76 +/- 0.10, consistent with a SSHB between Glu and His of the catalytic triad. From an empirical correlation of delta with hydrogen bond lengths in small crystalline compounds, the length of this SSHB is 2.62 +/- 0.02 A, in agreement with the length of 2.63 +/- 0.03 A, independently obtained from phi. Upon addition of a 3-fold excess of the mechanism-based inhibitor 4-nitrophenyl diethyl phosphate (paraoxon) to the free enzyme at pH 7.5, and subsequent deethylation, two deshielded resonances of unequal intensity appeared at 16.6 and 15.5 ppm, consistent with SSHBs with lengths of 2.63 +/- 0.02 and 2.65 +/- 0.02 A, respectively, suggesting conformational heterogeneity of the active-site histidine as a hydrogen bond donor to either Glu-327 of the catalytic triad or to Glu-199, also in the active site. Conformational heterogeneity was confirmed with the methylphosphonate ester anion adduct of the active-site serine, which showed two deshielded resonances of equal intensity at 16.5 and 15.8 ppm with phi values of 0.47 +/- 0.10 and 0.49 +/- 0.10 corresponding to average hydrogen bond lengths of 2.59 +/- 0.04 and 2.61 +/- 0.04 A, respectively. Similarly, lowering the pH of the free enzyme to 5.1 to protonate the active-site histidine (pK(a) = 6.0 +/- 0.4) resulted in the appearance of two deshielded resonances, at 17.7 and 16.4 ppm, consistent with SSHBs with lengths of 2.62 +/- 0.02 and 2.63 +/- 0.02 A, respectively. The NMR-derived distances agree with those found in the X-ray structures of the homologous acetylcholinesterase from Torpedo californica complexed with TMTFA (2.66 +/- 0.28 A) and sarin (2.53 +/- 0.26 A) and at low pH (2.52 +/- 0.25 A). However, the order of magnitude greater precision of the NMR-derived distances establishes the presence of SSHBs at the active site of acetylcholinesterase, and detect conformational heterogeneity of the active-site histidine. We suggest that the high catalytic power of cholinesterases results in part from the formation of a SSHB between Glu and His of the catalytic triad.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Prótons , Acetofenonas/química , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Dimerização , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Nitrofenóis , Ressonância Magnética Nuclear Biomolecular/métodos , Organofosfonatos/química , Paraoxon/química , Proteínas Recombinantes/química , Torpedo
2.
Biochemistry ; 39(51): 16200-5, 2000 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-11123949

RESUMO

Cholinesterases (ChE), use a Glu-His-Ser catalytic triad to enhance the nucleophilicity of the catalytic serine. It has been shown that serine proteases, which employ an Asp-His-Ser catalytic triad for optimal catalytic efficiency, decrease the hydrogen bonding distance between the Asp-His pair to form a short, strong hydrogen bond (SSHB) upon binding mechanism-based inhibitors, which form tetrahedral Ser-adducts, analogous to the tetrahedral intermediates in catalysis, or at low pH when the histidine is protonated [Cassidy, C. S., Lin, J., Frey, P. A. (1997) Biochemistry 36, 4576-4584]. Two types of mechanism-based inhibitors were bound to pure equine butyrylcholinesterase (BChE), a 364 kDa homotetramer, and the complexes were studied by (1)H NMR at 600 MHz and 25-37 degrees C. The downfield region of the (1)H NMR spectrum of free BChE at pH 7.5 showed a broad, weak, deshielded resonance with a chemical shift, delta = 16.1 ppm, ascribed to a small amount of the histidine-protonated form. Upon addition of a 3-fold excess of diethyl 4-nitrophenyl phosphate (paraoxon) and subsequent dealkylation, the broad 16.1 ppm resonance increased in intensity 4.7-fold, and yielded a D/H fractionation factor phi = 0.72+/-0.10 consistent with a SSHB between Glu and His of the catalytic triad. From an empirical correlation of delta with hydrogen-bond length in small crystalline compounds, the length of this SSBH is 2.64+/-0.04 A, in agreement with the length of 2.62+/-0.02 A independently obtained from phi. The addition of a 3-fold excess of m-(N,N, N-trimethylammonio)trifluoroacetophenone to BChE yielded no signal at 16.1 ppm, and a 640 Hz broad, highly deshielded proton resonance with a chemical shift delta = 18.1 ppm and a D/H fractionation factor phi = 0.63+/-0.10, also consistent with a SSHB. The length of this SSHB is calculated to be 2.62+/-0.04 A from delta and 2.59+/-0.03 A from phi. These NMR-derived distances agree with those found in the X-ray structures of the homologous acetylcholinesterase complexed with the same mechanism-based inhibitors, 2.60+/-0.22 and 2.66+/-0.28 A. However, the order of magnitude greater precision of the NMR-derived distances establish the presence of SSHBs. We suggest that ChEs achieve their remarkable catalytic power in ester hydrolysis, in part, due to the formation of a SSHB between Glu and His of the catalytic triad.


Assuntos
Butirilcolinesterase/química , Acetofenonas/metabolismo , Acetofenonas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Cavalos , Ligação de Hidrogênio/efeitos dos fármacos , Cinética , Ressonância Magnética Nuclear Biomolecular/métodos , Paraoxon/metabolismo , Paraoxon/farmacologia
3.
Biochemistry ; 38(30): 9557-61, 1999 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-10423232

RESUMO

Product analysis of dealkylation in P(S)C(S)-soman-inhibited electric eel acetylcholinesterase (AChE) by GC-MS using the selected ion monitoring mode has been carried out. The instrument was calibrated with pure standards of 2,3-dimethyl-1-butene and 2, 3-dimethyl-2-butene in the gas phase and methylene chloride extracts of 2,3-dimethyl-2-butanol and 3,3-dimethyl-2-butanol from the aqueous phase. The dealkylation in soman-inhibited AChE at pH 5.0 +/- 0.2 and 25 degrees C produces close to 40% alkenes and 50-60% 2, 3-dimethyl-2-butanol. No 3,3-dimethyl-2-butanol could be detected to provide direct evidence of the intervention of a secondary carbenium ion in the reaction path. All the products of the reaction originate from a tertiary carbenium ion. These findings are in good agreement with the results of Michel et al. [(1967) Arch. Biochem. Biophys. 121, 29], which were obtained by countercurrent distribution of tritium-labeled products and their identification by scintillation counting. The early experiments were performed with the mixture of the four soman diastereomers, all labeled with tritium in Calpha.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Soman/farmacologia , Acetilcolinesterase/química , Animais , Inibidores da Colinesterase/química , Cromatografia Gasosa , Remoção de Radical Alquila , Electrophorus , Hexanos/química , Hexanóis/química , Espectrometria de Massas
4.
Biochemistry ; 37(43): 15086-96, 1998 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-9790671

RESUMO

Bimolecular rate constants for the inactivation of recombinant (r) human (Hu) butyrylcholinesterase (BChE) with P(S)C(S)- and P(S)C(R)-2-(3,3-dimethylbutyl) methylphosphonofluoridate (soman) are (92 +/- 7) x 10(6) M-1 min-1 and (13.7 +/- 0.8) x 10(6) M-1 min-1 at pH 7.4, mu = 0.1 M and 25 degreesC. Mutations of E197(199) to D or Q and W82(84) to A result in reductions in the rate constants for inactivation with P(S)C(S)-soman 4.3-, 11.8-, and 263-fold and with P(S)C(R)-soman by 6.5-, 47.3-, and 685-fold, respectively. The pH dependence of dealkylation (aging) in r mouse (Mo) acetylcholinesterase (AChE) and rHu BChE and their mutants inactivated with P(S)C(S)- and P(S)C(R)-soman was compared. Best-fit parameters for the asymmetric bell curves for the adducts of wild-type Mo AChE are pK1 = pK2 = 4.0-4.9 and pK3 = 5.2-6.6. These pKs are consistent with the involvement of two carboxylic acids, possibly E202(199) and either E334(327) or E450(443), and H447(440)H+ in the dealkylation of AChE. E202Q MoAChE inactivated with the soman diastereomers yielded pK3 = 5.5-5.8. Nearly symmetric pH curves for soman-inhibited wild-type and E197D Hu BChE gave pK2 = 3.7-4.6 and pK3 = 7.3-8.0, but much lower, pK3 approximately 5, for the corresponding adduct of the E197Q mutant. Dealkylation in soman-inhibited BChE is consistent with the participation of one carboxylic acid side chain and H438(440)H+. Maximal rate constants for dealkylation (kmax) are 1-6 min-1 for AChE and 2 min-1 for BChE at 25 degreesC. The W82 to A mutation in BChE results in the largest reduction, 2500-6000-fold, in the rate constant for dealkylation. The reduction in the rate constants for dealkylation in the E197 mutants is highly pH dependent. The solvent isotope effects at the pH maxima are 1.3-1.4, indicating unlikely preprotonation or proton in "flight" at the enzymic transition states. The new results support the push-pull mechanism of dealkylation in soman-inhibited cholinesterases proposed previously.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Soman/farmacologia , Substituição de Aminoácidos/genética , Animais , Inibidores da Colinesterase/química , Remoção de Radical Alquila , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ácido Glutâmico/genética , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Soman/química , Estereoisomerismo , Fatores de Tempo , Triptofano/genética
5.
Biochemistry ; 36(27): 8243-52, 1997 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-9204869

RESUMO

The pH-dependence and solvent isotope effects of dealkylation in diastereomeric adducts of Electric eel (Ee) and fetal bovine serum (FBS) acetylcholinesterase (AChE) inactivated with P(-)C(+) and P(-)C(-) 2-(3,3-dimethylbutyl) methylphosphonofluoridate (soman) were studied at 4.0 +/- 0.2 degrees C. The rate constant versus pH profiles were fit to a bell-shaped curve for all adducts. Best fit parameters are pK1 4.4-4.6 and pK2 6.3-6.5 for Ee AChE and pK1 4.8-5. 0 and pK2 5.8 for FBS AChE. The pKs are consistent with catalytic participation of the Glu199 anion and HisH+440. Maximal rate constants (kmax) are 13-16 x 10(-3) s-1 for Ee AChE and 8 x 10(-3) s-1 for FBS AChE. The solvent isotope effects at the pH maxima are 1.1-1.3, indicating unlikely proton transfer at the enzymic transition states for the dealkylation reaction. Slopes of log rate constant versus pH plots are near 1 at 25.0 +/- 0.2 degrees C between pH 7.0 and 10.0. In stark contrast, the corresponding adducts of trypsin are very stable even at 37.0 +/- 0.2 degrees C. The rate constants for diastereomers of soman-inhibited trypsin at 37.0 +/- 0.2 degrees C are pH independent and approximately 10(4) times smaller than kmax for analogous adducts with AChE. Dealkylation in soman-inhibited AChEs is estimated to occur at >10(10) times faster than a plausible nonenzymic reaction. Up to 40% of the catalytic acceleration can be attributed to an electrostatic push, and an electrostatic pull provides much of the balance. The results of this work together with results of a product analysis by Michel et al. (1969) can be explained by an initial and rate-determining methyl migration from Cbeta to Calpha. This is driven by the high electron density of residues (Glu199 and Trp84) at a crowded active site and may be concerted with C-O bond breaking. The positive charge at the rate-determining transition state is distributed between Cbeta and His440. A tertiary carbocation may have a fleeting existence before it is trapped by water or neighboring electrons which is likely to be promoted by Glu199 as the proton acceptor.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Soman/farmacologia , Alquilação , Animais , Enguias , Eletroquímica , Ativação Enzimática/efeitos dos fármacos , Sangue Fetal/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Solventes , Espectrofotometria Ultravioleta , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...