Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 270(3): 263-72, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14576934

RESUMO

Extracellularly targeted proteins are crucial for virulence of gram-negative phytopathogenic bacteria. Erwinia carotovora subsp. carotovora employs the so-called type II (GSP) pathway to secrete a number of pectinases and cellulases, which cause the typical tissue maceration symptoms of soft-rot disease. The type III (hrp) pathway is the major virulence determinant in the genera Pseudomonas, Ralstonia and Xanthomonas, and in non-macerating species of Erwinia. The hrp cluster was recently partially characterized from E. carotovora sp. carotovora, and shown to affect virulence during early stages of infection. Here we have isolated and characterized 15 hrp genes comprising the remaining part of the cluster. The genes hrpL, hrpXY and hrpS were deduced to be transcribed as separate units, whereas the 11 remaining genes from hrpJ to hrcU form a single large operon. The hrpX gene, which codes for the sensory kinase of the two-component regulatory locus hrpXY was insertionally inactivated by placing a transposon (entranceposon) in the gene. The resulting mutant bacterium expresses the hrp genes at high basal level even in a non-inducing medium. This relative overexpression was shown to be due to the hrpX::entranceposon insertion causing enhanced transcription of the downstream hrpY gene. The hrpX(-)-hrpYC mutant bacterium exhibited a slower growth rate and the appearance of disease symptoms in infected Arabidopsis plants was delayed, as compared to the wild-type strain. The need for hrp gene expression for virulence has been documented in both non-macerating plant pathogens and in soft-rotting Erwinia sp. but this is the first demonstration that high basal-level expression of hrp -regulated genes may actually have a negative impact on disease progress in a susceptible host plant.


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Família Multigênica , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidade , Virulência/genética , Sequência de Bases , Celulase/genética , Mapeamento Cromossômico , Primers do DNA , DNA Recombinante/genética , Marcadores Genéticos , Luciferases/genética , Luciferases/metabolismo , Plasmídeos , Poligalacturonase/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Mol Plant Microbe Interact ; 14(8): 962-8, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11497468

RESUMO

The virulence of soft-rot Erwinia species is dependent mainly upon secreted enzymes such as pectinases, pectin lyases, and proteases that cause maceration of plant tissue. Some soft-rot Erwinia spp. also harbor genes homologous to the hypersensitive reaction and pathogenesis (hrp) gene cluster, encoding components of the type III secretion system. The hrp genes are essential virulence determinants for numerous nonmacerating gram-negative plant pathogens but their role in the virulence of soft-rot Erwinia spp. is not clear. We isolated and characterized 11 hrp genes of Erwinia carotovora subsp. carotovora. Three putative sigmaL-dependent Hrp box promoter sequences were found. The genes were expressed when the bacteria were grown in Hrp-inducing medium. The operon structure of the hrp genes was determined by mRNA hybridization, and the results were in accordance with the location of the Hrp boxes. An E. carotovora strain with mutated hrcC, an essential hrp gene, was constructed. The hrcC- strain was able to multiply and cause disease in Arabidopsis, but the population kinetics were altered so that growth was delayed during the early stages of infection.


Assuntos
Genes Bacterianos , Família Multigênica , Pectobacterium carotovorum/genética , Doenças das Plantas/genética , Arabidopsis , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Fator sigma
3.
Mol Gen Genet ; 263(6): 1031-7, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10954089

RESUMO

A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.


Assuntos
Celulase/genética , Celulose/metabolismo , Erwinia/genética , Genes Bacterianos , Sequência de Aminoácidos , Sequência de Bases , Celulase/metabolismo , Clonagem Molecular , Erwinia/enzimologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...