Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(40): 10058-10063, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224486

RESUMO

Cancer clonal evolution is based on accrual of driving genetic alterations that are expected to cooperate and progressively increase malignancy. Little is known on whether any genetic alteration can hinder the oncogenic function of a coexisting alteration, so that therapeutic targeting of the one can, paradoxically, revive the function of the other. We report the case of a driver oncogene (MET) that is not only bypassed, but also disabled by the mutation of a downstream transducer (BRAF), and reignited by inhibition of the latter. In a metastasis originated from a cancer of unknown primary (CUP), the MET oncogene was amplified eightfold, but unexpectedly, the kinase was dephosphorylated and inactive. As result, specific drugs targeting MET (JNJ-38877605) failed to inhibit growth of xenografts derived from the patient. In addition to MET amplification, the patient harbored, as sole proliferative driver, a mutation hyperactivating BRAF (G469A). Surprisingly, specific blockade of the BRAF pathway was equally ineffective, and it was accompanied by rephosphorylation of the amplified MET oncoprotein and by revived addiction to MET. Mechanistically, MET inactivation in the context of the BRAF-activating mutation is driven through a negative feedback loop involving inactivation of PP2A phosphatase, which in turn leads to phosphorylation on MET inhibitory Ser985. Disruption of this feedback loop allows PP2A reactivation, removing the inhibitory phosphorylation from Ser985 and thereby unleashing MET kinase activity. Evidence is provided for a mechanism of therapeutic resistance to single-oncoprotein targeting, based on reactivation of a genetic alteration functionally dormant in targeted cancer cells.


Assuntos
Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas c-met , Pirazóis/farmacologia , Piridazinas/farmacologia , Células A549 , Substituição de Aminoácidos , Animais , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
ERJ Open Res ; 4(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29531956

RESUMO

RON mutations might identify actionable targets in highly aggressive lung tumours http://ow.ly/RTUp30hSBX6.

3.
Hum Mutat ; 39(3): 371-377, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219214

RESUMO

Whole exome sequencing (WES) was used to investigate two Italian siblings with wild-type RET genotype, who developed medullary thyroid cancers (MTCs) and, later, primary prostate and breast cancers, respectively. The proband's MTC harbored a p.Met918Thr RET mutation; his sister's MTC was RET/RAS wild-type. Both siblings had a germline mutation (p.Arg417Gln) in the extracellular Sema domain of the proto-oncogene MET. Experiments involving ectopic expression of MET p.Arg417Gln in MET-negative T47D breast cancer cells documented the mutant receptor's functionality and its ability to enhance cell migration and invasion. Our findings highlight a possible link between MET germline mutations and MTCs and suggest that MET p. Arg417Gln may promote an invasive malignant phenotype. The possibility that MTC can be driven/co-driven by a MET mutation has potential management implications, since the tyrosine-kinase inhibitor cabozantinib-approved for treating advanced MTCs-is a specific MET inhibitor.


Assuntos
Carcinoma Neuroendócrino/genética , Sequenciamento do Exoma , Células Germinativas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-ret/genética , Irmãos , Neoplasias da Glândula Tireoide/genética , Sequência de Bases , Feminino , Humanos , Masculino , Linhagem , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...