Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 70: 128-139, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007162

RESUMO

ß-Amyloid oligomers (AßOs) and neuroinflammation are 2 main culprits to counteract in Alzheimer's disease (AD). Doxycycline (DOXY) is a second generation antibiotic of the tetracycline class that are promising drugs tested in many clinical trials for a number of different pathologies. DOXY is endowed with antiamyloidogenic properties and better crosses the blood-brain barrier, but its efficacy has never been tested in AD mice. We herein show that 15- to 16-month-old APP/PS1dE9 (APP/PS1) AD mice receiving DOXY under different treatment regimens recovered their memory without plaque reduction. An acute DOXY treatment was, also, sufficient to improve APP/PS1 mouse memory, suggesting an action against soluble AßOs. This was confirmed in an AßO-induced mouse model, where the AßO-mediated memory impairment was abolished by a DOXY pretreatment. Although AßOs induce memory impairment through glial activation, assessing the anti-inflammatory action of DOXY, we found that in both the AßO-treated and APP/PS1 mice, the memory recovery was associated with a lower neuroinflammation. Our data promote DOXY as a hopeful repositioned drug counteracting crucial neuropathological AD targets.


Assuntos
Doença de Alzheimer/complicações , Antibacterianos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Encéfalo/efeitos dos fármacos , Doxiciclina/administração & dosagem , Encefalite/tratamento farmacológico , Memória/efeitos dos fármacos , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Encefalite/complicações , Encefalite/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
2.
Sci Rep ; 4: 4618, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24714650

RESUMO

Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimer's disease (AD)-related dysfunctions. Here we report that 1-(3',4'-dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aß42 to the less toxic Aß38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ciclopropanos/farmacologia , Flurbiprofeno/análogos & derivados , Fragmentos de Peptídeos/metabolismo , Acetilação , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Linhagem Celular Tumoral , Flurbiprofeno/farmacologia , Histonas/metabolismo , Humanos , Proteína Kangai-1/biossíntese , Proteína Kangai-1/genética , Estrutura Terciária de Proteína , Transcrição Gênica
3.
PLoS One ; 7(8): e42454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905134

RESUMO

BACKGROUND: The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. METHODOLOGY/PRINCIPAL FINDINGS: By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. CONCLUSIONS: Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.


Assuntos
Canais de Cálcio/biossíntese , Canais de Cálcio/fisiologia , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Sistema Respiratório/patologia , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica/métodos , Inflamação , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso/metabolismo , Fumar , Canal de Cátion TRPA1 , Canais de Cátion TRPV/biossíntese
4.
Nature ; 464(7291): 1033-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20348908

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genoma Fúngico/genética , Simbiose/genética , Carboidratos , Elementos de DNA Transponíveis/genética , Carpóforos/metabolismo , Genes Fúngicos/genética , Genômica , Haploidia , Dados de Sequência Molecular , Análise de Sequência de DNA , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...