Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902026

RESUMO

Demyelinating diseases are a group of pathologies characterized by the alteration of myelin-that is, the coating that wraps around most of the nerve fibres of the central and peripheral nervous system, whose goal is the improvement of nerve conduction and the preservation of energy spent during action potential propagation [...].


Assuntos
Doenças Desmielinizantes , Humanos , Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Condução Nervosa/fisiologia , Potenciais de Ação
2.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078064

RESUMO

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Assuntos
Edema Encefálico , Cistos , Astrócitos/metabolismo , Edema Encefálico/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cloretos/metabolismo , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/metabolismo , Proteômica , Canais de Ânion Dependentes de Voltagem/metabolismo , Água/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408815

RESUMO

Niemann Pick type C disease (NPC) is a rare disorder characterized by lysosomal lipid accumulation that damages peripheral organs and the central nervous system. Currently, only miglustat is authorized for NPC treatment in Europe, and thus the identification of new therapies is necessary. The hypothesis addressed in this study is that increasing adenosine levels may represent a new therapeutic approach for NPC. In fact, a reduced level of adenosine has been shown in the brain of animal models of NPC; moreover, the compound T1-11, which is able to weakly stimulate A2A receptor and to increase adenosine levels by blocking the equilibrative nucleoside transporter ENT1, significantly ameliorated the pathological phenotype and extended the survival in a mouse model of the disease. To test our hypothesis, fibroblasts from NPC1 patients were treated with dipyridamole, a clinically-approved drug with inhibitory activity towards ENT1. Dipyridamole significantly reduced cholesterol accumulation in fibroblasts and rescued mitochondrial deficits; the mechanism elicited by dipyridamole relies on activation of the adenosine A2AR subtype subsequent to the increased levels of extracellular adenosine due to the inhibition of ENT1. In conclusion, our results provide the proof of concept that targeting adenosine tone could be beneficial in NPC.


Assuntos
Doença de Niemann-Pick Tipo C , Adenosina/farmacologia , Animais , Dipiridamol/farmacologia , Dipiridamol/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Camundongos , Doença de Niemann-Pick Tipo C/patologia , Estudo de Prova de Conceito
4.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502342

RESUMO

Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.


Assuntos
Anti-Hipertensivos/farmacologia , Diferenciação Celular , Colesterol/metabolismo , Oligodendroglia/efeitos dos fármacos , PPAR gama/metabolismo , Substâncias Protetoras/farmacologia , Telmisartan/farmacologia , Animais , Oligodendroglia/metabolismo , PPAR gama/genética , Ratos , Ratos Wistar
5.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445564

RESUMO

Niemann-Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Colesterol/metabolismo , Bainha de Mielina/patologia , Doença de Niemann-Pick Tipo C/patologia , Receptor A2A de Adenosina/metabolismo , Animais , Humanos , Bainha de Mielina/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo
6.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281194

RESUMO

Cockayne syndrome group A (CS-A) is a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. Cells derived from CS-A patients present as pathological hallmarks excessive oxidative stress, mitochondrial fragmentation and apoptosis associated with hyperactivation of the mitochondrial fission dynamin related protein 1 (DRP1). In this study, by using human cell models we further investigated the interplay between DRP1 and CSA and we determined whether pharmacological or genetic inhibition of DRP1 affects disease progression. Both reactive oxygen and nitrogen species are in excess in CS-A cells and when the mitochondrial translocation of DRP1 is inhibited a reduction of these species is observed together with a recovery of mitochondrial integrity and a significant decrease of apoptosis. This study indicates that the CSA-driven modulation of DRP1 pathway is key to control mitochondrial homeostasis and apoptosis and suggests DRP1 as a potential target in the treatment of CS patients.


Assuntos
Síndrome de Cockayne/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose/genética , Linhagem Celular , Síndrome de Cockayne/fisiopatologia , Progressão da Doença , Dinaminas/genética , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Estresse Oxidativo , Quinazolinonas/metabolismo , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Sci Rep ; 11(1): 4952, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654147

RESUMO

Curcumin is a compound found in the rhizome of Curcuma longa (turmeric) with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. The current study aims to assess the effects of this natural compound on oligodendrocyte progenitor (OP) differentiation, particularly in inflammatory conditions. We found that curcumin can promote the differentiation of OPs and to counteract the maturation arrest of OPs induced by TNF-α by a mechanism involving PPAR-γ (peroxisome proliferator activated receptor), a ligand-activated transcription factor with neuroprotective and anti-inflammatory capabilities. Furthermore, curcumin induces the phosphorylation of the protein kinase ERK1/2 known to regulate the transition from OPs to immature oligodendrocytes (OLs), by a mechanism only partially dependent on PPAR-γ. Curcumin is also able to raise the levels of the co-factor PGC1-α and of the cytochrome c oxidase core protein COX1, even when OPs are exposed to TNF-α, through a PPAR-γ-mediated mechanism, in line with the known ability of PPAR-γ to promote mitochondrial integrity and functions, which are crucial for OL differentiation to occur. Altogether, this study provides evidence for a further mechanism of action of curcumin besides its well-known anti-inflammatory properties and supports the suggested therapeutic potential of this nutraceutical in demyelinating diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Curcumina/farmacologia , Oligodendroglia/metabolismo , PPAR gama/metabolismo , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oligodendroglia/citologia , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008700

RESUMO

Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.


Assuntos
Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Leucoencefalopatias/patologia , Diferenciação Celular , Humanos , Modelos Biológicos , Bainha de Mielina/patologia
9.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003644

RESUMO

An adequate protection from oxidative and inflammatory reactions, together with the promotion of oligodendrocyte progenitor (OP) differentiation, is needed to recover from myelin damage in demyelinating diseases. Mitochondria are targets of inflammatory and oxidative insults and are essential in oligodendrocyte differentiation. It is known that nuclear factor-erythroid 2-related factor/antioxidant responsive element (NRF2/ARE) and peroxisome proliferator-activated receptor gamma/PPAR-γ response element (PPAR-γ/PPRE) pathways control inflammation and overcome mitochondrial impairment. In this study, we analyzed the effects of activators of these pathways on mitochondrial features, protection from inflammatory/mitochondrial insults and cell differentiation in OP cultures, to depict the specificities and similarities of their actions. We used dimethyl-fumarate (DMF) and pioglitazone (pio) as agents activating NRF2 and PPAR-γ, respectively, and two synthetic hybrids acting differently on the NRF2/ARE pathway. Only DMF and compound 1 caused early effects on the mitochondria. Both DMF and pio induced mitochondrial biogenesis but different antioxidant repertoires. Moreover, pio induced OP differentiation more efficiently than DMF. Finally, DMF, pio and compound 1 protected from tumor necrosis factor-alpha (TNF-α) insult, with pio showing faster kinetics of action and compound 1 a higher activity than DMF. In conclusion, NRF2 and PPAR-γ by inducing partially overlapping pathways accomplish complementary functions aimed at the preservation of mitochondrial function, the defense against oxidative stress and the promotion of OP differentiation.


Assuntos
Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Oligodendroglia/efeitos dos fármacos , PPAR gama/genética , Animais , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pioglitazona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
10.
Cells ; 9(6)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521795

RESUMO

Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.


Assuntos
Astrócitos/metabolismo , Comunicação Celular , Conexina 43/metabolismo , Cistos/metabolismo , Cistos/patologia , Junções Comunicantes/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Modelos Biológicos , Mutação/genética , Fosforilação , Estabilidade Proteica , Transporte Proteico
11.
J Neurochem ; 152(3): 284-298, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31520531

RESUMO

We recently demonstrated that a tonic activation of adenosine A2A receptors (A2A Rs) is required for cocaine-induced synaptic depression and increase in the activity of STriatal-Enriched protein tyrosine Phosphatase (STEP). In this study, we elaborated on the relationship between A2A R and STEP using genetic, pharmacological, and cellular tools. We found that the activities of protein tyrosine phosphatases (PTPs), and in particular of STEP, are significantly increased in the striatum and hippocampus of a transgenic rat strain over-expressing the neuronal A2A R (NSEA2A ) with respect to wild-type (WT) rats. Moreover the selective A2A R agonist 4-[2-[[6-Amino-9-(N-ethyl-ß-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride up-regulates PTPs and STEP activities in WT but not in NSEA2A rats, while the selective A2A R antagonist 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol restores the tyrosine phosphatase activities in NSEA2A , having no effects in WT rats. In addition, while cocaine induced the activation of PTP and STEP in WT rats, it failed to increase phosphatase activity in NSEA2A rats. A2A Rs modulate STEP activity also in the SH-SY5Y neuroblastoma cell line, where a calcium-dependent calcineurin/PP1 pathway was found to play a major role. In summary, the present study identified a novel interaction between A2A R and STEP that could have important clinical implications, since STEP has emerged as key regulator of signaling pathways involved in neurodegenerative and neuropsychiatric diseases and A2A Rs are considered a promising target for the development of therapeutic strategies for different diseases of the central nervous system. Read the Editorial Highlight for this article on page 270.


Assuntos
Neurônios/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Linhagem Celular , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
12.
Sci Rep ; 9(1): 9782, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278313

RESUMO

Niemann Pick type C (NPC) disease is a rare neurovisceral disorder. Mutations in npc1 gene induce an intracellular accumulation of unesterified cholesterol in the endosomal/lysosomal system causing cell death. We recently showed that stimulation of adenosine A2A receptors (A2AR) restores cholesterol accumulation in late endosomes/lysosomes in human NPC fibroblasts and neural cell lines transiently transfected with NPC1 siRNA, suggesting that these receptors might be targeted to contrast the disease. Since NPC1 disease is characterized by dysmyelination and maturational arrest of oligodendrocyte progenitors (OPs), in this study, we investigated whether A2AR stimulation could promote oligodendrocyte differentiation and myelin formation, thus overcoming these important neurological abnormalities. We developed a NPC1 pharmacological model, in which primary cultures of OPs are exposed to a cholesterol transport inhibitor to induce a NPC1-like phenotype characterized by several typical features such as (i) cholesterol accumulation, (ii) altered mitochondrial morphology and membrane potential, (iii) defect of autophagy and (iv) maturation arrest. The A2AR agonist CGS21680 normalized all NPC1-like features. The ability of CGS21680 of rescuing OP from maturational arrest and promoting their differentiation to mature OL, suggests that A2AR stimulation might be exploited to correct dysmyelination in NPC1, further supporting their therapeutic potential in the disease.


Assuntos
Doença de Niemann-Pick Tipo C/etiologia , Doença de Niemann-Pick Tipo C/metabolismo , Oligodendroglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Autofagia , Diferenciação Celular , Colesterol/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Oligodendroglia/patologia
13.
Oncotarget ; 8(61): 102852-102867, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262528

RESUMO

The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.

14.
PLoS One ; 11(5): e0155516, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196359

RESUMO

An autosomal dominant protein aggregate myopathy, characterized by high plasma creatine kinase and calsequestrin-1 (CASQ1) accumulation in skeletal muscle, has been recently associated with a missense mutation in CASQ1 gene. The mutation replaces an evolutionarily-conserved aspartic acid with glycine at position 244 (p.D244G) of CASQ1, the main sarcoplasmic reticulum (SR) Ca2+ binding and storage protein localized at the terminal cisternae of skeletal muscle cells. Here, immunocytochemical analysis of myotubes, differentiated from muscle-derived primary myoblasts, shows that sarcoplasmic vacuolar aggregations positive for CASQ1 are significantly larger in CASQ1-mutated cells than control cells. A strong co-immuno staining of both RyR1 and CASQ1 was also noted in the vacuoles of myotubes and muscle biopsies derived from patients. Electrophysiological recordings and sarcoplasmic Ca2+ measurements provide evidence for less Ca2+ release from the SR of mutated myotubes when compared to that of controls. These findings further clarify the pathogenic nature of the p.D244G variant and point out defects in sarcoplasmic Ca2+ homeostasis as a mechanism underlying this human disease, which could be distinctly classified as "CASQ1-couplonopathy".


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Mutação , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação , Cafeína/farmacologia , Calsequestrina , Eletrofisiologia , Homeostase , Humanos , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
15.
Hum Mol Genet ; 25(8): 1543-58, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908604

RESUMO

Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs.


Assuntos
Astrócitos/citologia , Cistos/patologia , Receptores ErbB/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Proteínas de Membrana/metabolismo , Animais , Astrócitos/metabolismo , Astrocitoma/genética , Astrocitoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cistos/genética , Regulação da Expressão Gênica , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , Mutação , Ratos , Transdução de Sinais
16.
Mutat Res ; 782: 34-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26546826

RESUMO

Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O2₋• and H2O2 being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine.


Assuntos
Fibroblastos/metabolismo , Micronúcleos com Defeito Cromossômico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Xeroderma Pigmentoso/genética , Células Cultivadas , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Testes para Micronúcleos , Mitocôndrias/patologia , Estresse Oxidativo/genética , Cultura Primária de Células , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética
17.
J Neurochem ; 135(1): 147-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173855

RESUMO

Microglial activation is a dynamic process, central to neuroinflammation, which can have beneficial or pathogenic effects to human health. Mitochondria are key players in neuroinflammatory and neurodegenerative processes, common to most brain diseases. To the best of our knowledge on the role of mitochondria in the modulation of neuroinflammation, we focused on the mitochondrial uncoupling protein-2 (UCP2), known to control mitochondrial functions and to be implicated in a variety of physiological and pathological processes. In primary microglial cultures, the M1 stimulus lipopolysaccharide induced an early and transitory decrease in UCP2 levels. The initial UCP2 down-regulation was paralleled by mitochondrial inner membrane potential (mMP) depolarization and increased mitochondrial reactive oxygen species production. The key role of UCP2 in controlling mMP and reactive oxygen species production was confirmed by both pharmacological inhibition and down-regulation by RNA interference. Additionally, UCP2-silenced microglia stimulated with lipopolysaccharide showed an enhanced inflammatory response, characterized by a greater production of nitric oxide and interleukin-6. UCP2 was differently regulated by M2 stimuli, as indicated by its persistent up-regulation by interleukin-4. In UCP2-silenced microglia, interleukin-4 failed to induce M2 genes (mannose receptor 1 and interleukin-10) and to reduce M1 genes (inducible nitric oxide synthase and tumour necrosis factor-α). Our findings indicate that UCP2 is central to the process of microglial activation, with opposite regulation of M1 and M2 responses, and point to UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes in several brain diseases where neuroinflammation is recognized to contribute to neurodegeneration. We show that the mitochondrial uncoupling protein-2 (UCP2) is central to the process of microglial activation, with opposite regulation of M1 and M2 responses. In UCP2-silenced microglia, lipopolysaccharide (LPS) triggers an enhanced inflammatory response characterized by a greater expression of M1 genes, whereas interleukin-4 (IL-4) fails in inducing M2 genes and reducing M1 genes. We propose UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes.


Assuntos
Canais Iônicos/metabolismo , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 2 , Regulação para Cima
18.
Front Cell Neurosci ; 9: 66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883547

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLCs) disease is a rare inherited, autosomal recessive form of childhood-onset spongiform leukodystrophy characterized by macrocephaly, deterioration of motor functions, epileptic seizures and mental decline. Brain edema, subcortical fluid cysts, myelin and astrocyte vacuolation are the histopathological hallmarks of MLC. Mutations in either the MLC1 gene (>75% of patients) or the GlialCAM gene (<20% of patients) are responsible for the disease. Recently, the GlialCAM adhesion protein was found essential for the membrane expression and function of the chloride channel ClC-2 indicating MLC disease caused by mutation in GlialCAM as the first channelopathy among leukodystrophies. On the contrary, the function of MLC1 protein, which binds GlialCAM, its functional relationship with ClC-2 and the molecular mechanisms underlying MLC1 mutation-induced functional defects are not fully understood yet. The human MLC1 gene encodes a 377-amino acid membrane protein with eight predicted transmembrane domains which shows very low homology with voltage-dependent potassium (K(+)) channel subunits. The high expression of MLC1 in brain astrocytes contacting blood vessels and meninges and brain alterations observed in MLC patients have led to hypothesize a role for MLC1 in the regulation of ion and water homeostasis. Recent studies have shown that MLC1 establishes structural and/or functional interactions with several ion/water channels and transporters and ion channel accessory proteins, and that these interactions are affected by MLC1 mutations causing MLC. Here, we review data on MLC1 functional properties obtained in in vitro and in vivo models and discuss evidence linking the effects of MLC1 mutations to brain channelopathies.

19.
Free Radic Biol Med ; 73: 41-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24794409

RESUMO

Phytoprostanes (PhytoP's) are formed in higher plants from α-linolenic acid via a nonenzymatic free radical-catalyzed pathway and act as endogenous mediators capable of protecting cells from damage under various conditions related to oxidative stress. Humans are exposed to PhytoP's, as they are present in relevant quantities in vegetable food and pollen. The uptake of PhytoP's through the olfactory epithelium of the nasal mucosa, upon pollen grain inhalation, is of interest as the intranasal pathway is regarded as a direct route of communication between the environment and the brain. On this basis, we sought to investigate the potential activities of PhytoP's on immature cells of the central nervous system, which are particularly susceptible to oxidative stress. In neuroblastoma SH-SY5Y cells, used as a model for undifferentiated neurons, B1-PhytoP's, but not F1-PhytoP's, increased cell metabolic activity and protected them from oxidant damage caused by H2O2. Moreover, B1-PhytoP's induced a moderate depolarization of the mitochondrial inner membrane potential. These effects were prevented by the PPAR-γ antagonist GW9662. When SH-SY5Y cells were induced to differentiate toward a more mature phenotype, they became resistant to B1-PhytoP activities. B1-PhytoP's also influenced immature cells of an oligodendroglial line, as they increased the metabolic activity of oligodendrocyte progenitors and strongly accelerated their differentiation to immature oligodendrocytes, through mechanisms at least partially dependent on PPAR-γ activity. However, B1-PhytoP's did not protect oligodendrocyte progenitors against oxidant injury. Taken together, these data suggest that B1-PhytoP's, through novel mechanisms involving PPAR-γ, can specifically affect immature brain cells, such as neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant injury and promoting myelination.


Assuntos
Ciclopentanos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Furanos/farmacologia , Células-Tronco Neurais/citologia , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo , Anilidas/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/citologia , Oligodendroglia/citologia , Estresse Oxidativo , PPAR gama/antagonistas & inibidores , Ácido alfa-Linolênico/metabolismo
20.
Neurobiol Dis ; 66: 1-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561067

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.


Assuntos
Astrócitos/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Estresse Oxidativo , Transporte Proteico/efeitos dos fármacos , Ratos , Canais de Cátion TRPV/metabolismo , Transferrina/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...