Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(19): 6441-6452, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31017439

RESUMO

Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly( N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition. Thus, successive thermal switching results in "schizophrenic" micellization, in which the roles of the hydrophobic core block and the hydrophilic shell block are interchanged depending on the temperature. Furthermore, by virtue of the strong electrolyte-sensitivity of the zwitterionic polysulfobetaine block, we succeeded to shift its UCST below the LCST of the PNIPMAM block by adding small amounts of an electrolyte, thus inverting the pathway of switching. This superimposed orthogonal switching by electrolyte addition enabled us to control the switching scenarios between the two types of micelles (i) via an insoluble state, if the LCST-type cloud point is below the UCST-type cloud point, which is the case at low salt concentrations or (ii) via a molecularly dissolved state, if the LCST-type cloud point is above the UCST-type cloud point, which is the case at high salt concentrations. Systematic variation of the block lengths allowed for verifying the anticipated behavior and identifying the molecular architecture needed. The versatile and tunable self-assembly offers manifold opportunities, for example, for smart emulsifiers or for sophisticated carrier systems.

2.
J Phys Chem Lett ; 8(16): 3800-3804, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28759235

RESUMO

Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

3.
Soft Matter ; 13(19): 3568-3579, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28443918

RESUMO

We investigate the influence of pH on the rheological and structural properties of hydrogels formed by hydrophobic association of the sticky ends of the triblock terpolymer poly(methyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate-co-methacrylic acid)-b-poly(methyl methacrylate) (PMMA-b-P(DEA-co-MAA)-b-PMMA). The middle block is a weak polyampholyte having a pH dependent charge density and sign, which enables tuning of the rheological and structural properties by pH variation. Small-angle neutron scattering (SANS) studies of solutions in D2O at 0.05 wt% and pH 3.0 reveal clusters of interconnected spherical micelles having PMMA cores, stabilized by repulsive ionic interactions in the middle polyampholyte block. With increasing pH, the degree of ionization of the DEA units decreases, whereas the one of the MAA units increases, resulting in a complete loss of the correlation between these micelles. At a concentration of 3 wt% at low pH values, the system forms a gel with charged fuzzy spheres from PMMA interacting via a screened Coulomb potential. With increasing pH, the gel disintegrates due to the decrease in the effective charge on the micelles. At both concentrations, the hydrophobic aggregation of micelles is observed near the isoelectric point. At pH 3.0-7.4, the autocorrelation functions measured by rotational dynamic light scattering at 3 wt% exhibit a decay steeper than single exponential, which confirms that the gels are frozen, presumably due to the glassy PMMA cores and hydrophobic interpolyelectrolyte complexes. At pH 11, the diffusion of single micelles is observed in addition to the frozen dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...