Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717758

RESUMO

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.

2.
Acc Chem Res ; 50(6): 1351-1358, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28485593

RESUMO

As a result of the unique physical and electrical properties, graphene continues to attract the interest of a large segment of the scientific community. Since graphene does not occur naturally, the ability to exfoliate and isolate individual layers of graphene from graphite is an important and challenging process. The interlayer cohesive energy of graphite that results from van der Waals attractions has been determined experimentally to be 61 meV per carbon atom (61 meV/C atom). This requires the development of a method to overcome the strong attractive forces associated with graphite. The exfoliation process that we, and others, have investigated involves electron transfer into bulk graphite from intercalated lithium to yield lithium graphenide. The resulting graphenide can be reacted with various reagents to yield functionalized graphene. As a part of our interest in the functionalization of graphene, we have explored the Birch reduction as a route to hydrographenes. The addition of hydrogen transforms graphene into an insulator, leading to the prediction that important applications will emerge. This Account focuses mainly on the characterization of the hydrographenes that are obtained from different types of graphite including synthetic graphite powder, natural flake graphite, and annealed graphite powder. Analysis by solid state 13C NMR spectroscopy proved to be important since it was shown that the hydrographenes are composed of interior, isolated aromatic (predominantly fully substituted benzene) rings surrounded by saturated rings. The expected clusters of benzene rings were not found. NMR spectroscopy also offers strong evidence for the presence of tert-butyl alcohol and ethanol (workup solvent) that could not be removed in vacuo from the samples. These compounds could be observed to move freely within the layers of the hydrographene. High-resolution transmission electron microscopy images revealed a remarkable change in morphology that results when hydrogen is added to the graphenide. The appearance of edge and circular dislocations and increased distances between graphitic layers are most visible in the case of the hydrographenes that are formed from annealed graphite. The repetitive hydrogenation of synthetic graphite powder leads to an increase in the distances between the graphitic layers in the (002) direction from 3.4 Å for the initial graphite to 4.11 Å after the first reduction and to 4.29 Å after a third reduction of the same material. Defect-free graphite is formed when the hydrographenes are heated. The distance between carbon layers decreases from 4.11 to 3.44 Å after heating the samples to 1200 °C. This trend toward the spacing of graphite confirms the reversibility of the functionalization process. The C-H bonds have been broken yielding hydrogen, and the exposed carbon orbitals are in close enough proximity to have reverted to graphite. This Account introduces only a narrow area of materials chemistry, and many applications of graphene and its derivatives can be expected as researchers exploit this burgeoning field.

3.
Chemistry ; 22(4): 1452-60, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26749119

RESUMO

The hydrogenation of commercial graphite using lithium/ammonia as the reducing agent and tert-butyl alcohol as a proton source was investigated. Characterization of the products after successive reductions of the same material by high-resolution transmission electron microscopy revealed a new material that was replete with edge and circular dislocations. Analysis by solid-state (13)C NMR spectroscopy indicates that after three reductions, the remaining aromatic rings appear to be interior benzene rings. NMR spectroscopy also offers strong evidence for the presence of small amounts of tert-butyl alcohol and ethanol (workup solvent) that could not be removed in vacuo from the samples. These compounds could be observed to move freely between the layers of the hydrographene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...