Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260020

RESUMO

Forecasting infection case counts and estimating accurate epidemiological parameters are critical components of managing the response to a pandemic. This paper describes a modular, extensible framework for a COVID-19 forecasting system, primarily deployed during the first Covid wave in Mumbai and Jharkhand, India. We employ a variant of the SEIR compartmental model motivated by the nature of the available data and operational constraints. We estimate best fit parameters using Sequential Model-Based Optimization (SMBO), and describe the use of a novel, fast and approximate Bayesian model averaging method (ABMA) for parameter uncertainty estimation that compares well with a more rigorous Markov Chain Monte Carlo (MCMC) approach in practice. We address on-the-ground deployment challenges such as spikes in the reported input data using a novel weighted smoothing method. We describe extensive empirical analyses to evaluate the accuracy of our method on ground truth as well as against other state-of-the-art approaches. Finally, we outline deployment lessons and describe how inferred model parameters were used by government partners to interpret the state of the epidemic and how model forecasts were used to estimate staffing and planning needs essential for addressing COVID-19 hospital burden. CCS CONCEPTSO_LIApplied computing [->] Health care information systems; Forecasting; C_LIO_LIComputing methodologies [->] Modeling methodologies. C_LI

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20243956

RESUMO

During an epidemic, accurate long term forecasts are crucial for decision-makers to adopt appropriate policies and to prevent medical resources from being overwhelmed. This came to the forefront during the covid-19 pandemic, during which there were numerous efforts to predict the number of new infections. Various classes of models were employed for forecasting including compartmental models and curve-fitting approaches. Curve fitting models often have accurate short term forecasts. Their parameters, however, can be difficult to associate with actual disease dynamics. Compartmental models take these dynamics into account, allowing for more flexible and interpretable models that facilitate qualitative comparison of scenarios. This paper proposes a method of strengthening the forecasts from compartmental models by using short term predictions from a curve fitting approach as synthetic data. We discuss the method of fitting this hybrid model in a generalized manner without reliance on region specific data, making this approach easy to adapt. The model is compared to a standard approach; differences in performance are analyzed for a diverse set of covid-19 case counts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...