Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(4): 537-553.e5, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579684

RESUMO

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.


Assuntos
Cistos , Doenças Renais Policísticas , Humanos , Camundongos , Animais , Códon sem Sentido/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/terapia , Doenças Renais Policísticas/metabolismo , Rim/metabolismo , Organoides/metabolismo , Cistos/genética , Cistos/metabolismo , Glicosídeos/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G185-G194, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631377

RESUMO

Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche. To examine the role of ISEMFs, we have previously generated mice with deletion of epimorphin ( Epim), an ISEMF protein and member of the syntaxin family of intracellular vesicle docking proteins that regulate cell secretion. Herein we explore the mechanisms for previous observations that Epim deletion increases gut crypt cell proliferation, crypt fission, and small bowel length in vivo. Stem cell-derived crypt culture techniques were used to explore the interaction between enteroids and myofibroblasts from Epim-/- and WT mice. Enteroids cocultured with ISEMFS had increased growth and crypt-like budding compared with enteroids cultured without stromal support. Epim deletion in ISEMFs resulted in increased enteroid budding and surface area compared with cocultures with wild-type (WT) ISEMFs. In primary crypt cultures, Epim-/- enteroids had significantly increased surface area and budding compared with WTs. However, stem cell assays comparing the number of Epim-/- vs. WT colony-forming units after first passage showed no differences in the absence of ISEMF support. Epim-/- vs. WT ISEMFs had increased Wnt4 expression, and addition of Wnt4 to WT cocultures enhanced budding. We conclude that ISEMFs play an important role in the stem cell niche. Epim regulates stem cell proliferation and differentiation via stromal contributions to the niche microenvironment. NEW & NOTEWORTHY The role of subepithelial intestinal myofibroblasts (ISEMFs) in the gut stem cell niche is controversial. We provide novel evidence supporting ISEMFs as important niche contributors. We show that the in vivo intestinal effects of deletion of myofibroblast Epim can be recapitulated in crypt stem cell cultures in vitro. ISEMFs support cocultured stem cell proliferation and enteroid growth, and these effects are augmented by deletion of Epim, a syntaxin that regulates myofibroblast cell secretion.


Assuntos
Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Glicoproteínas de Membrana/metabolismo , Miofibroblastos/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Microambiente Celular/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...