Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(4): 903-913, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237064

RESUMO

The potential of molecular simulations is limited by their computational costs. There is often a need to accelerate simulations using some of the enhanced sampling methods. Metadynamics applies a history-dependent bias potential that disfavors previously visited states. To apply metadynamics, it is necessary to select a few properties of the system─collective variables (CVs) that can be used to define the bias potential. Over the past few years, there have been emerging opportunities for machine learning and, in particular, artificial neural networks within this domain. In this broad context, a specific unsupervised machine learning method was utilized, namely, parametric time-lagged t-distributed stochastic neighbor embedding (ptltSNE) to design CVs. The approach was tested on a Trp-cage trajectory (tryptophan cage) from the literature. The trajectory was used to generate a map of conformations, distinguish fast conformational changes from slow ones, and design CVs. Then, metadynamic simulations were performed. To accelerate the formation of the α-helix, we added the α-RMSD collective variable. This simulation led to one folding event in a 350 ns metadynamics simulation. To accelerate degrees of freedom not addressed by CVs, we performed parallel tempering metadynamics. This simulation led to 10 folding events in a 200 ns simulation with 32 replicas.

2.
J Chem Inf Model ; 62(3): 567-576, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35112877

RESUMO

The accuracy of biomolecular simulations depends on the accuracy of an empirical molecular mechanics potential known as a force field: a set of parameters and expressions to estimate the potential from atomic coordinates. Accurate parametrization of force fields for small organic molecules is a challenge due to their high diversity. One of the possible approaches is to apply a correction to the existing force fields. Here, we propose an approach to estimate the density functional theory (DFT)-derived force field correction which is calculated during the run of molecular dynamics without significantly affecting its speed. Using the formula known as a property map collective variable, we approximate the force field correction by a weighted average of this force field correction calculated only for a small series of reference structures. To validate this method, we used seven AMBER force fields, and we show how it is possible to convert one force field to behave like the other one. We also present the force field correction for the important anticancer drug Imatinib as a use case example. Our method appears to be suitable for adjusting the force field for general drug-like molecules. We provide a pipeline that generates the correction; this pipeline is available at https://pmcvff-correction.cerit-sc.cz/.


Assuntos
Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...