Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(4): 570-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27595592

RESUMO

Reward-related memory is an important factor in cocaine seeking. One necessary signaling mechanism for long-term memory formation is the activation of poly(ADP-ribose) polymerase-1 (PARP-1), via poly(ADP-ribosyl)ation. We demonstrate herein that auto-poly(ADP-ribosyl)ation of activated PARP-1 was significantly pronounced during retrieval of cocaine-associated contextual memory, in the central amygdala (CeA) of rats expressing cocaine-conditioned place preference (CPP). Intra-CeA pharmacological and short hairpin RNA depletion of PARP-1 activity during cocaine-associated memory retrieval abolished CPP. In contrast, PARP-1 inhibition after memory retrieval did not affect CPP reconsolidation process and subsequent retrievals. Chromatin immunoprecipitation sequencing revealed that PARP-1 binding in the CeA is highly enriched in genes involved in neuronal signaling. We identified among PARP targets in CeA a single gene, yet uncharacterized and encoding a putative transposase inhibitor, at which PARP-1 enrichment markedly increases during cocaine-associated memory retrieval and positively correlates with CPP. Our findings have important implications for understanding drug-related behaviors, and suggest possible future therapeutic targets for drug abuse.


Assuntos
Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Fatores de Ribosilação do ADP/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Cocaína/efeitos adversos , Cocaína/metabolismo , Cocaína/farmacologia , Masculino , Memória/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Transposases/antagonistas & inibidores
2.
Sci Rep ; 6: 24950, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121568

RESUMO

Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Regulação da Expressão Gênica , Potenciação de Longa Duração , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Camundongos , Camundongos Knockout , Ligação Proteica
3.
J Cell Biol ; 150(2): 293-307, 2000 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-10908573

RESUMO

We present the first evidence for a fast activation of the nuclear protein poly(ADP-ribose) polymerase (PARP) by signals evoked in the cell membrane, constituting a novel mode of signaling to the cell nucleus. PARP, an abundant, highly conserved, chromatin-bound protein found only in eukaryotes, exclusively catalyzes polyADP-ribosylation of DNA-binding proteins, thereby modulating their activity. Activation of PARP, reportedly induced by formation of DNA breaks, is involved in DNA transcription, replication, and repair. Our findings demonstrate an alternative mechanism: a fast activation of PARP, evoked by inositol 1,4,5,-trisphosphate-Ca(2+) mobilization, that does not involve DNA breaks. These findings identify PARP as a novel downstream target of phospholipase C, and unveil a novel fast signal-induced modification of DNA-binding proteins by polyADP-ribosylation.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/enzimologia , Núcleo Celular/enzimologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Dano ao DNA/fisiologia , DNA Topoisomerases Tipo I/metabolismo , Feto/citologia , Inositol 1,4,5-Trifosfato/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Proteínas Nucleares/metabolismo , Ratos
4.
J Biol Chem ; 274(11): 7431-40, 1999 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-10066808

RESUMO

Evidence for depolarization-induced activation of G-proteins in membranes of rat brain synaptoneurosomes has been previously reported (Cohen-Armon, M., and Sokolovsky, M. (1991) J. Biol. Chem. 266, 2595-2605; Cohen-Armon, M., and Sokolovsky, M. (1993) J. Biol. Chem. 268, 9824-9838). In the present work we identify the activated G-proteins as Go-proteins by tracing their depolarization-induced in situ photoaffinity labeling with [alpha32P]GTP-azidoanilide (GTPAA). Labeled GTPAA was introduced into transiently permeabilized rat brain-stem synaptoneurosomes. The resealed synaptoneurosomes, while being UV-irradiated, were depolarized. Relative to synaptoneurosomes at resting potential, the covalent binding of [alpha32P]GTPAA to Galphao1- and Galphao3-proteins, but not to Galphao2- isoforms, was enhanced by 5- to 7-fold in depolarized synaptoneurosomes, thereby implying an accelerated exchange of GDP for [alpha32P]GTPAA. Their depolarization-induced photoaffinity labeling was independent of stimulation of Go-protein-coupled receptors and could be reversed by membrane repolarization, thus excluding induction by transmitters release. It was, however, dependent on depolarization-induced activation of the voltage-gated sodium channels (VGSC), regardless of Na+ current. The alpha subunit of VGSC was cross-linked and co-immunoprecipitated with Galphao-proteins in depolarized brain-stem and cortical synaptoneurosomes. VGSC alpha subunit most efficiently cross-linked with guanosine 5'-O-2-thiodiphosphate-bound rather than to guanosine 5'-O-(3-thiotriphosphate)-bound Galphao-proteins in isolated synaptoneurosomal membranes. These findings support a possible involvement of VGSC in depolarization-induced activation of Go-proteins.


Assuntos
Azidas/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/análogos & derivados , Potenciais da Membrana , Marcadores de Fotoafinidade/química , Adenosina Difosfato Ribose/metabolismo , Animais , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Ativação do Canal Iônico , Masculino , Fosforilação , Testes de Precipitina , Ligação Proteica , Ratos , Receptores de Neurotransmissores/metabolismo , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...