Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Nucl Med ; 61(1): 112-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519801

RESUMO

68Ga-NODAGA-exendin-4 is a promising tracer for ß-cell imaging using PET/CT. Possible applications include preoperative visualization of insulinomas and discrimination between focal and diffuse forms of congenital hyperinsulinism. There is also a significant role for this tracer in extending our knowledge on the role of ß-cell mass in the pathophysiology of type 1 and type 2 diabetes by enabling noninvasive quantification of tracer uptake as a measure for ß-cell mass. Calculating radiation doses from this tracer is important to assess its safety for use in patients (including young children) with benign diseases and healthy individuals. Methods: Six patients with hyperinsulinemic hypoglycemia were included. After intravenous injection of 100 MBq of the tracer, 4 successive PET/CT scans were obtained at 30, 60, 120, and 240 min after injection. Tracer activity in the pancreas, kidneys, duodenum, and remainder of the body were determined, and time-integrated activity coefficients for the measured organs were calculated. OLINDA/EXM software, version 1.1, was applied to calculate radiation doses using the reference adult male and female models and to estimate radiation doses to children. Results: The mean total effective dose for adults was very low (0.71 ± 0.07 mSv for a standard injected dose of 100 MBq). The organ with the highest absorbed dose was the kidney (47.3 ± 10.2 mGy/100 MBq). The estimated effective dose was 2.32 ± 0.32 mSv for an injected dose of 20 MBq in newborns. This dose decreased to 0.77 ± 0.11 mSv/20 MBq for 1-y-old children and 0.59 ± 0.05 mSv for an injected dose of 30 MBq in 5-y-old children. Conclusion: Our human PET/CT-based dosimetric calculations show that the effective radiation doses from the novel tracer 68Ga-NODAGA-exendin-4 are very low for adults and children. The doses are lower than reported for other polypeptide tracers such as somatostatin analogs (2.1-2.6 mSv/100 MBq) and are beneficial for application as a research tool, especially when repeated examinations are needed.


Assuntos
Acetatos/química , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Exenatida/química , Radioisótopos de Gálio/química , Compostos Heterocíclicos com 1 Anel/química , Células Secretoras de Insulina/patologia , Radiometria/métodos , Adulto , Idoso , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Rim/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pâncreas/diagnóstico por imagem , Peptídeos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doses de Radiação , Compostos Radiofarmacêuticos/química , Somatostatina/análogos & derivados , Adulto Jovem
2.
EJNMMI Phys ; 6(1): 29, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31879813

RESUMO

Absolute quantification of radiotracer distribution using SPECT/CT imaging is of great importance for dosimetry aimed at personalized radionuclide precision treatment. However, its accuracy depends on many factors. Using phantom measurements, this multi-vendor and multi-center study evaluates the quantitative accuracy and inter-system variability of various SPECT/CT systems as well as the effect of patient size, processing software and reconstruction algorithms on recovery coefficients (RC). METHODS: Five SPECT/CT systems were included: Discovery™ NM/CT 670 Pro (GE Healthcare), Precedence™ 6 (Philips Healthcare), Symbia Intevo™, and Symbia™ T16 (twice) (Siemens Healthineers). Three phantoms were used based on the NEMA IEC body phantom without lung insert simulating body mass indexes (BMI) of 25, 28, and 47 kg/m2. Six spheres (0.5-26.5 mL) and background were filled with 0.1 and 0.01 MBq/mL 99mTc-pertechnetate, respectively. Volumes of interest (VOI) of spheres were obtained by a region growing technique using a 50% threshold of the maximum voxel value corrected for background activity. RC, defined as imaged activity concentration divided by actual activity concentration, were determined for maximum (RCmax) and mean voxel value (RCmean) in the VOI for each sphere diameter. Inter-system variability was expressed as median absolute deviation (MAD) of RC. Acquisition settings were standardized. Images were reconstructed using vendor-specific 3D iterative reconstruction algorithms with institute-specific settings used in clinical practice and processed using a standardized, in-house developed processing tool based on the SimpleITK framework. Additionally, all data were reconstructed with a vendor-neutral reconstruction algorithm (Hybrid Recon™; Hermes Medical Solutions). RESULTS: RC decreased with decreasing sphere diameter for each system. Inter-system variability (MAD) was 16 and 17% for RCmean and RCmax, respectively. Standardized reconstruction decreased this variability to 4 and 5%. High BMI hampers quantification of small lesions (< 10 ml). CONCLUSION: Absolute SPECT quantification in a multi-center and multi-vendor setting is feasible, especially when reconstruction protocols are standardized, paving the way for a standard for absolute quantitative SPECT.

3.
J Nucl Med Technol ; 47(2): 154-159, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30413602

RESUMO

Appropriate attenuation correction is important for accurate quantification of SUVs in PET. Patient respiratory motion can introduce a spatial mismatch between respiration-gated PET and CT, reducing quantitative accuracy. In this study, the effect of a patient-specific breathing-instructed CT protocol on the spatial alignment between CT and amplitude-based optimal respiration-gated PET images was investigated. Methods: 18F-FDG PET/CT imaging was performed on 20 patients. In addition to the standard low-dose free-breathing CT, breath-hold CT was performed. The amplitude limits of the respiration-gated PET were used to instruct patients to hold their breath during CT acquisition at a similar amplitude level. Spatial mismatch was quantified using the position differences between the lung-liver transition in PET and CT images, the distance between PET and CT lesions' centroids, and the amount of overlap as indicated by the Jaccard similarity coefficient. Furthermore, the effect on attenuation correction was quantified by measuring SUVs, metabolic tumor volume, and total lesion glycolysis (TLG) of lung lesions. Results: All patients found the breathing instructions feasible; however, 4 patients had trouble complying with the instructions. In total, 18 patients were included. The average distance between the lung-liver transition between PET and CT was significantly reduced for breath-hold CT (1.7 ± 2.1 mm), compared with standard CT (5.6 ± 7.3 mm) (P = 0.049). Furthermore, the mean distance between the lesions' centroids on PET and CT was significantly smaller for breath-hold CT (3.6 ± 2.0 mm) than for standard CT (5.5 ± 6.5 mm) (P = 0.040). Quantification of lung lesion SUV was significantly affected, with a higher SUVmean when breath-hold CT (6.3 ± 3.9 g/cm3) was used for image reconstruction than for standard CT (6.1 ± 3.8 g/cm3) (P = 0.044). Though metabolic tumor volume was not significantly different, TLG reached statistical significance. Conclusion: Optimal respiration-gated PET in combination with patient-specific breathing-instructed CT results in an improved alignment between PET and CT images and shows an increased SUVmean and TLG. Even though the effects are small, a more accurate SUV and TLG determination is of importance for a more stable PET quantification, which is relevant for radiotherapy planning and therapy response monitoring.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Respiração , Técnicas de Imagem de Sincronização Respiratória/métodos , Feminino , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Medicina de Precisão
4.
J Nucl Med ; 60(6): 745-751, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30413658

RESUMO

Static single-time-frame 18F-FDG PET/CT is useful for the localization and functional characterization of pheochromocytomas and paragangliomas (PPGLs). 18F-FDG uptake varies between PPGLs with different genotypes, and the highest SUVs are observed in cases of succinate dehydrogenase (SDH) mutations, possibly related to enhanced aerobic glycolysis in tumor cells. The exact determinants of 18F-FDG accumulation in PPGLs are unknown. We performed dynamic PET/CT scanning to assess whether in vivo 18F-FDG pharmacokinetics has added value over static PET to distinguish different genotypes. Methods: Dynamic 18F-FDG PET/CT was performed on 13 sporadic PPGLs and 13 PPGLs from 11 patients with mutations in SDH complex subunits B and D, von Hippel-Lindau (VHL), RET, and neurofibromin 1 (NF1). Pharmacokinetic analysis was performed using a 2-tissue-compartment tracer kinetic model. The derived transfer rate-constants for transmembranous glucose flux (K1 [in], k2 [out]) and intracellular phosphorylation (k3), along with the vascular blood fraction (Vb), were analyzed using nonlinear regression analysis. Glucose metabolic rate (MRglc) was calculated using Patlak linear regression analysis. The SUVmax of the lesions was determined on additional static PET/CT images. Results: Both MRglc and SUVmax were significantly higher for hereditary cluster 1 (SDHx, VHL) tumors than for hereditary cluster 2 (RET, NF1) and sporadic tumors (P < 0.01 and P < 0.05, respectively). Median k3 was significantly higher for cluster 1 than for sporadic tumors (P < 0.01). Median Vb was significantly higher for cluster 1 than for cluster 2 tumors (P < 0.01). No statistically significant differences in K1 and k2 were found between the groups. Cutoffs for k3 to distinguish between cluster 1 and other tumors were established at 0.015 min-1 (100% sensitivity, 15.8% specificity) and 0.636 min-1 (100% specificity, 85.7% sensitivity). MRglc significantly correlated with SUVmax (P = 0.001) and k3 (P = 0.002). Conclusion: In vivo metabolic tumor profiling in patients with PPGL can be achieved by assessing 18F-FDG pharmacokinetics using dynamic PET/CT scanning. Cluster 1 PPGLs can be reliably identified by a high 18F-FDG phosphorylation rate.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Paraganglioma/diagnóstico por imagem , Paraganglioma/metabolismo , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Eur J Nucl Med Mol Imaging ; 44(Suppl 1): 4-16, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28687866

RESUMO

In recent years, there have been multiple advances in positron emission tomography/computed tomography (PET/CT) that improve cancer imaging. The present generation of PET/CT scanners introduces new hardware, software, and acquisition methods. This review describes these new developments, which include time-of-flight (TOF), point-spread-function (PSF), maximum-a-posteriori (MAP) based reconstruction, smaller voxels, respiratory gating, metal artefact reduction, and administration of quadratic weight-dependent 18F-fluorodeoxyglucose (FDG) activity. Also, hardware developments such as continuous bed motion (CBM), (digital) solid-state photodetectors and combined PET and magnetic resonance (MR) systems are explained. These novel techniques have a significant impact on cancer imaging, as they result in better image quality, improved small lesion detectability, and more accurate quantification of radiopharmaceutical uptake. This influences cancer diagnosis and staging, as well as therapy response monitoring and radiotherapy planning. Finally, the possible impact of these developments on the European Association of Nuclear Medicine (EANM) guidelines and EANM Research Ltd. (EARL) accreditation for FDG-PET/CT tumor imaging is discussed.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagem Multimodal
6.
J Nucl Med ; 58(11): 1867-1872, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28490470

RESUMO

In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans were analyzed visually and quantitatively to measure the effect on PET images of iterative metal artifact reduction (iMAR) of CT data. Methods: The phantom consisted of 2 types of hip prostheses in a solution of 18F-FDG and water. 18F-FDG PET/CT scans of 14 patients with metal implants (either dental implants, hip prostheses, shoulder prostheses, or pedicle screws) and 68Ga-labeled prostate-specific membrane antigen (68Ga-PSMA) PET/CT scans of 7 patients with hip prostheses were scored by 2 experienced nuclear medicine physicians to analyze clinical relevance. For all patients, a lesion was located in the field of view of the metal implant. Phantom and patients were scanned in a PET/CT scanner. The standard low-dose CT scans were processed with the iMAR algorithm. The PET data were reconstructed using attenuation correction provided by both standard CT and iMAR-processed CT. Results: For the phantom scans, cold artifacts were visible on the PET image. There was a 30% deficit in 18F-FDG concentration, which was restored by iMAR processing, indicating that metal artifacts on CT images induce quantification errors in PET data. The iMAR algorithm was useful for most patients. When iMAR was used, the confidence in interpretation increased or stayed the same, with an average improvement of 28% ± 20% (scored on a scale of 0%-100% confidence). The SUV increase or decrease depended on the type of metal artifact. The mean difference in absolute values of SUVmean of the lesions was 3.5% ± 3.3%. Conclusion: The iMAR algorithm increases the confidence of the interpretation of the PET/CT scan and influences the SUV. The added value of iMAR depends on the indication for the PET/CT scan, location and size/type of the prosthesis, and location and extent of the disease.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Metais/efeitos da radiação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Próteses e Implantes , Tomografia Computadorizada de Emissão/métodos , Idoso , Algoritmos , Feminino , Fluordesoxiglucose F18 , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Melhoria de Qualidade , Compostos Radiofarmacêuticos
7.
Sci Rep ; 7: 39800, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067253

RESUMO

Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33-61%) and the islet self-dose (7.5-57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes.


Assuntos
Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Rim/metabolismo , Lesões por Radiação/diagnóstico , Radiometria/métodos , Adulto , Animais , Contagem de Células , Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Modelos Animais de Doenças , Feminino , Radioisótopos de Gálio/química , Radioisótopos de Gálio/metabolismo , Humanos , Radioisótopos de Índio/química , Radioisótopos de Índio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intercelular , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos da radiação , Rim/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/metabolismo , Radiação , Doses de Radiação , Ratos , Ratos Mutantes , Adulto Jovem
8.
Radiology ; 283(2): 547-559, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27846378

RESUMO

Purpose To assess whether dynamic fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (VB) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm3; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas VB was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18F-FDG phosphorylation rate, and VB were less heterogeneous in AC than in SCC (Friedman analysis of variance). Conclusion Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and VB between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation. © RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Fluordesoxiglucose F18/farmacocinética , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Imagem Molecular/métodos , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
EJNMMI Phys ; 3(1): 29, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27928774

RESUMO

BACKGROUND: Quantitative single photon emission computed tomography (SPECT) is challenging, especially for pancreatic beta cell imaging with 111In-exendin due to high uptake in the kidneys versus much lower uptake in the nearby pancreas. Therefore, we designed a three-dimensionally (3D) printed phantom representing the pancreas and kidneys to mimic the human situation in beta cell imaging. The phantom was used to assess the effect of different reconstruction settings on the quantification of the pancreas uptake for two different, commercially available software packages. METHODS: 3D-printed, hollow pancreas and kidney compartments were inserted into the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom casing. These organs and the background compartment were filled with activities simulating relatively high and low pancreatic 111In-exendin uptake for, respectively, healthy humans and type 1 diabetes patients. Images were reconstructed using Siemens Flash 3D and Hermes Hybrid Recon, with varying numbers of iterations and subsets and corrections. Images were visually assessed on homogeneity and artefacts, and quantitatively by the pancreas-to-kidney activity concentration ratio. RESULTS: Phantom images were similar to clinical images and showed comparable artefacts. All corrections were required to clearly visualize the pancreas. Increased numbers of subsets and iterations improved the quantitative performance but decreased homogeneity both in the pancreas and the background. Based on the phantom analyses, the Hybrid Recon reconstruction with 6 iterations and 16 subsets was found to be most suitable for clinical use. CONCLUSIONS: This work strongly contributed to quantification of pancreatic 111In-exendin uptake. It showed how clinical images of 111In-exendin can be interpreted and enabled selection of the most appropriate protocol for clinical use.

10.
J Nucl Med ; 57(11): 1692-1698, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27283931

RESUMO

Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. METHODS: We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. RESULTS: In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P < 0.007) except entropy (P > 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. CONCLUSION: The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise.


Assuntos
Artefatos , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Intensificação de Imagem Radiográfica/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade , Razão Sinal-Ruído
11.
Radiother Oncol ; 119(3): 473-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27178141

RESUMO

BACKGROUND AND PURPOSE: This study evaluated the use of total lesion glycolysis (TLG) determined by different automatic segmentation algorithms, for early response monitoring in non-small cell lung cancer (NSCLC) patients during concomitant chemoradiotherapy. MATERIALS AND METHODS: Twenty-seven patients with locally advanced NSCLC treated with concomitant chemoradiotherapy underwent (18)F-fluorodeoxyglucose (FDG) PET/CT imaging before and in the second week of treatment. Segmentation of the primary tumours and lymph nodes was performed using fixed threshold segmentation at (i) 40% SUVmax (T40), (ii) 50% SUVmax (T50), (iii) relative-threshold-level (RTL), (iv) signal-to-background ratio (SBR), and (v) fuzzy locally adaptive Bayesian (FLAB) segmentation. Association of primary tumour TLG (TLGT), lymph node TLG (TLGLN), summed TLG (TLGS=TLGT+TLGLN), and relative TLG decrease (ΔTLG) with overall-survival (OS) and progression-free survival (PFS) was determined using univariate Cox regression models. RESULTS: Pretreatment TLGT was predictive for PFS and OS, irrespective of the segmentation method used. Inclusion of TLGLN improved disease and early response assessment, with pretreatment TLGS more strongly associated with PFS and OS than TLGT for all segmentation algorithms. This was also the case for ΔTLGS, which was significantly associated with PFS and OS, with the exception of RTL and T40. CONCLUSIONS: ΔTLGS was significantly associated with PFS and OS, except for RTL and T40. Inclusion of TLGLN improves early treatment response monitoring during concomitant chemoradiotherapy with FDG-PET.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Neoplasias Pulmonares/terapia , Adulto , Idoso , Algoritmos , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Intervalo Livre de Doença , Feminino , Fluordesoxiglucose F18 , Glicólise , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Modelos de Riscos Proporcionais
12.
J Nucl Med ; 57(7): 1033-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26966161

RESUMO

UNLABELLED: (18)F-FDG PET is well established in the field of oncology for diagnosis and staging purposes and is increasingly being used to assess therapeutic response and prognosis. Many quantitative indices can be used to characterize tumors on (18)F-FDG PET images, such as SUVmax, metabolically active tumor volume (MATV), total lesion glycolysis, and, more recently, the proposed intratumor uptake heterogeneity features. Although most PET data considered within this context concern the analysis of activity distribution using images obtained from a single static acquisition, parametric images generated from dynamic acquisitions and reflecting radiotracer kinetics may provide additional information. The purpose of this study was to quantify differences between volumetry, uptake, and heterogeneity features extracted from static and parametric PET images of non-small cell lung carcinoma (NSCLC) in order to provide insight on the potential added value of parametric images. METHODS: Dynamic (18)F-FDG PET/CT was performed on 20 therapy-naive NSCLC patients for whom primary surgical resection was planned. Both static and parametric PET images were analyzed, with quantitative parameters (MATV, SUVmax, SUVmean, heterogeneity) being extracted from the segmented tumors. Differences were investigated using Spearman rank correlation and Bland-Altman analysis. RESULTS: MATV was slightly smaller on static images (-2% ± 7%), but the difference was not significant (P = 0.14). All derived parameters, including those characterizing tumor functional heterogeneity, correlated strongly between static and parametric images (r = 0.70-0.98, P ≤ 0.0006), exhibiting differences of less than ±25%. CONCLUSION: In NSCLC primary tumors, parametric and static baseline (18)F-FDG PET images provided strongly correlated quantitative features for both standard (MATV, SUVmax, SUVmean) and heterogeneity quantification. Consequently, heterogeneity quantification on parametric images does not seem to provide significant complementary information compared with static SUV images.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fluordesoxiglucose F18/farmacocinética , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Glicólise , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Estudos Prospectivos
13.
Z Med Phys ; 26(4): 311-322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26725165

RESUMO

PURPOSE: Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. MATERIALS AND METHODS: Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. RESULTS: Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively. Regularization with smoothing priors could suppress these noise patterns at the cost of reduced image contrast. The mean N% was 6.4% and 6.8% for low count QSP and MRP MAP reconstructed images. Alternatively, regularization with an anatomical Bowhser prior resulted in sharp images with high contrast, limited image distortion, and low N% of 8.3% in low count images, although some image artifacts did occur. Analysis of clinical images suggested that the same effects occur in clinical imaging. CONCLUSION: Image quality of low count SPECT acquisitions reconstructed with modern 3DOSEM algorithms is deteriorated by the occurrence of correlated noise patterns and image distortions. The artifacts observed in the phantom experiments can also occur in clinical imaging.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
14.
Nucl Med Commun ; 37(1): 66-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26440570

RESUMO

OBJECTIVE: This radiotherapy planning study evaluated tumour delineation using both optimally respiratory gated and nongated fluorine-18 fluorodeoxyglucose-PET (F-FDG-PET). METHODS: For 22 non-small-cell lung tumours, both scans were used to create the nongated and gated (g) gross tumour volumes (GTVg) together with the accompanying clinical target volumes (CTV) and planning target volumes (PTV). The size of the target volumes (TV) was evaluated and the accompanying radiotherapy plans were created to study the radiation doses to the organs at risk (OAR). RESULTS: The median volumes of GTVg, CTVg and PTVg were statistically significantly smaller compared with the corresponding nongated volumes, resulting in a median TV reduction of 0.5 cm (interquartile range 0.1-1.2), 1.5 cm (-0.2 to 7.0) and 2.3 cm (-0.5 to 11.3) for the GTVg, CTVg and PTVg, respectively. For the OAR, only the percentage of lung (GTV included) receiving at least 35 Gy was significantly smaller after gating, with a median difference in lung volume receiving at least 35 Gy of 5.7 cm (interquartile range -0.8 to 30.50). CONCLUSION: Compared with nongated F-FDG-PET, the TVs obtained with optimally respiratory gated F-FDG-PET were significantly smaller, however, without a clinically relevant difference in radiation dose to the OAR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Tomografia por Emissão de Pósitrons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Técnicas de Imagem de Sincronização Respiratória , Estudos Retrospectivos
15.
EJNMMI Phys ; 2(1): 5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26501807

RESUMO

BACKGROUND: Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. METHODS: RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. RESULTS: 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. CONCLUSIONS: 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

16.
Lung Cancer ; 90(2): 217-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26415996

RESUMO

OBJECTIVES: Respiratory motion artefacts during positron emission tomography (PET) deteriorate image quality, potentially introducing diagnostic uncertainties. The objective of this study was to determine the impact of optimal respiratory gating on clinical staging and management of patients with primary lung cancer. MATERIALS AND METHODS: From our fast-track outpatient diagnostic program, 55 patients with primary lung cancer, who underwent whole body [(18)F]-fluorodeoxyglucose (FDG) PET, were included. Respiratory gating was performed on bed positions covering the thorax and abdomen. Independent reading was conducted by two nuclear medicine physicians. The observers scored the number and anatomical location of the lesions, lymph node basins and the presence of distant metastasis in non-gated and gated images. A tumor (T), lymph node (N), and metastasis (M) stage was assigned to each patient according to the 7th revision of the TNM classification. Staging accuracy was determined using histopathological data and follow-up CT imaging. In addition, a management plan was created for each patient based on non-gated and gated images by an experienced pulmonologist. RESULTS: For nuclear medicine physician 1 and 2, respiratory gating resulted in detection of more lesions in five and eight patients (9% and 15%) respectively. However, this did not result in any migration in T or M-stage. Migration in N-stage was observed in four and seven patients (7% and 13%) for nuclear medicine physician 1 and 2 respectively. Staging accuracy was slightly improved when respiratory gating was performed. Furthermore, there was substantial agreement in patient management between non-gated and gated images. CONCLUSIONS: Respiratory gating improved staging accuracy, mainly in assessment of lymph node involvement. However, the effect on patient management was limited due to the presence of already advanced disease stage in many patients. These findings suggest that the expected impact of respiratory gating will be solely on management of patients with early disease.


Assuntos
Neoplasias Pulmonares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artefatos , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem
17.
J Nucl Med ; 56(12): 1817-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26383151

RESUMO

UNLABELLED: Respiratory motion during PET can cause inaccuracies in the quantification of radiotracer uptake, which negatively affects PET-guided radiotherapy planning. Quantitative accuracy can be improved by respiratory gating. However, additional miscalculation of standardized uptake value (SUV) in PET images can be caused by inappropriate attenuation correction due to a spatial mismatch between gated PET and CT. In this study, the effect of respiration-triggered CT on the spatial match between CT and amplitude-based respiration-gated PET images is investigated. METHODS: (18)F-FDG PET/CT was performed in 38 patients. Images were acquired on 2 PET/CT scanners, one without and one with continuous bed motion during PET acquisition. The amplitude limits of the amplitude-based respiration-gated PET were used for the respiration-triggered sequential low-dose CT. Both standard (spiral) and triggered CT scans were used to reconstruct the PET data. Spatial mismatch was quantified using the position difference between the lung-liver boundary in PET and CT images, the distance between PET and CT lung lesions' centroids, and the amount of overlap of lesions indicated by the Jaccard similarity coefficient. Furthermore, the effect of attenuation correction was quantified by measuring SUVs in lung lesions. RESULTS: For triggered CT, the average distance between the lung-liver boundary in PET and CT was significantly reduced (4.5 ± 6.7 mm) when compared with standard CT (9.2 ± 8.1 mm) (P < 0.001). The mean distance between the lesions' centroids in PET and CT images was 6.3 ± 4.0 and 5.6 ± 4.2 mm (P = 0.424), for the standard and triggered CT, respectively. Similarly, the Jaccard similarity coefficient was 0.30 ± 0.21 and 0.32 ± 0.20 (P = 0.609) for standard and triggered CT, respectively. For 6 lesions, there was no overlap of PET and CT when the standard CT was used; compared with the triggered CT, these lesions showed (partial) overlap. The maximum and mean SUV increase of the PET/CT compared with the PET/triggered CT was 5.7% ± 11.2% (P < 0.001) and 6.1% ± 10.2% (P = 0.001), respectively. CONCLUSION: Amplitude-based respiration-gated PET in combination with respiration-triggered CT resulted in a significantly improved match in the area of the liver dome and a significantly higher SUV for lung lesions. However, lesions in the lungs did not show a consistent improvement in spatial match.


Assuntos
Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Mecânica Respiratória , Tomografia Computadorizada de Emissão/métodos , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão/estatística & dados numéricos , Tomografia Computadorizada Espiral
18.
Nat Rev Clin Oncol ; 12(7): 395-407, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917254

RESUMO

Despite considerable improvements in the treatment options for advanced-stage non-small-cell lung cancer (NSCLC), disease-specific survival remains poor. With the aim of improving patient outcome, the treatment paradigm of locally advanced NSCLC has shifted from solely radiotherapy towards combined and intensified treatment approaches. Also, treatment for patients with stage IV (oligo)metastatic NSCLC has evolved rapidly, with therapeutic options that include a number of targeted agents, surgery, and stereotactic ablative radiotherapy. However, personalizing treatment to the individual patient remains difficult and requires monitoring of biological parameters responsible for treatment resistance to facilitate treatment selection, guidance, and adaptation. PET is a well-established molecular imaging platform that enables non-invasive quantification of many biological parameters that are relevant to both local and systemic therapy. With increasing clinical evidence, PET has gradually evolved from a purely diagnostic tool to a multifunctional imaging modality that can be utilized for treatment selection, adaptation, early response monitoring, and follow up in patients with NSCLC. Herein, we provide a comprehensive overview of the available clinical data on the use of this modality in this setting, and discuss future perspectives of PET imaging for the clinical management of patients with locally advanced and metastatic NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/terapia , Gerenciamento Clínico , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Estadiamento de Neoplasias , Seleção de Pacientes , Assistência Centrada no Paciente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
19.
Med Sci Sports Exerc ; 47(9): 1896-905, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25551402

RESUMO

PURPOSE: This study aimed to determine the contribution of each muscle of the lower limb to walking using positron emission tomography (PET) with [F]-fluorodeoxyglucose (FDG). Furthermore, we compared our results obtained using volumetric analysis of entire muscles with those obtained using a more traditional approach considering the uptake in only one slice in each segment. METHODS: Ten healthy subjects walked on a treadmill at self-selected comfortable walking speed for 90 min, 60 min before and 30 min after intravenous injection of 50-MBq FDG. A PET/computerized tomography scan of the lower limb was made subsequently. The three-dimensional contours of 39 muscles in the left lower limb were semiautomatically determined from magnetic resonance imaging scans. After nonrigidly registering the magnetic resonance imaging to the computerized tomography scans, we superimposed the muscle contours on the PET scans. RESULTS: The muscles with the highest median FDG uptake among all subjects were the soleus, gluteus maximus, vastus lateralis, gastrocnemius medialis, and adductor magnus. We found a wide range of FDG uptake values among subjects, including in some of the most important muscles involved in walking (e.g., soleus, gluteus medius, gastrocnemius medialis). Compared with the volumetric analysis, the single slice analysis did not yield an accurate estimate of the FDG uptake in many of the most active muscles, including the gluteus medius and minimus (overestimated) as well as all the thigh muscles (underestimated). CONCLUSIONS: The distribution of FDG among the muscles varied between subjects, suggesting that each subject had a unique activation pattern. The FDG uptake as estimated from single slices did not correspond well to the uptake obtained from volumetric analysis, which illustrates the added value of our novel three-dimensional image analysis techniques.


Assuntos
Imageamento Tridimensional , Extremidade Inferior/fisiologia , Imageamento por Ressonância Magnética , Músculo Esquelético/fisiologia , Tomografia por Emissão de Pósitrons , Caminhada/fisiologia , Adulto , Feminino , Fluordesoxiglucose F18 , Humanos , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/diagnóstico por imagem , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem
20.
J Nucl Med Technol ; 42(4): 269-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25342183

RESUMO

UNLABELLED: Respiratory motion during PET has a significant effect on the quantification of radiotracer uptake in PET images. Even when respiratory motion is considered using PET gating techniques, inaccuracies in standardized uptake values can be caused by inappropriate attenuation correction due to a spatial mismatch between PET and CT. In this study, the effect of breath-hold CT imaging on the spatial match between CT and amplitude-based respiratory-gated PET images is investigated. METHODS: Whole-body (18)F-FDG PET/CT imaging was performed in 52 patients with 125 lung lesions. (18)F-FDG PET was performed using optimized, amplitude-based respiratory gating. For CT, 36 patients were randomly assigned to the free-breathing (FB) group and 16 to the rest-expiratory breath-hold (BH) group. Spatial mismatch between the PET and CT images was quantified by measuring the distance between the centroids of PET and CT lesions and calculating the Jaccard similarity coefficient (JSC). RESULTS: In the upper lobes, the average distance between the centroids of the PET and CT lesions was 4.7 ± 3.1 and 6.0 ± 3.0 mm for the FB and BH groups, respectively (P = 0.11). For the middle and lower lobes, the distances were 5.8 ± 4.3 and 5.1 ± 2.9 mm (P = 0.70), respectively, and for the central region 4.8 ± 4.6 and 5.6 ± 2.0 mm (P = 0.24), respectively. The JSC for the upper lobes was 0.28 ± 0.17 and 0.28 ± 0.19, for the FB and the BH group, respectively (P = 0.83). For the middle and lower lobes, the JSC was 0.22 ± 0.16 and 0.28 ± 0.18 (P = 0.20), respectively, and for the central region 0.39 ± 0.17 and 0.13 ± 0.04 (P = 0.04), respectively. CONCLUSION: Providing breathing instructions to the patients during the CT acquisition did not improve the spatial alignment between the respiratory-gated PET images and the CT images. The difficulty experienced in using this clinical protocol, such as patient compliance and operator dependence, emphasizes the need for other strategies.


Assuntos
Suspensão da Respiração , Expiração , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons/métodos , Respiração , Técnicas de Imagem de Sincronização Respiratória/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Artefatos , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Masculino , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...