Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17172, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441378

RESUMO

Babesiosis is a protozoal disease affect livestock and pet animals such as cattle, buffaloes, sheep, goats, horses, donkeys, mules, dogs, and cats. It causes severe economic losses in livestock as well as in pet animals. A large number of dairy animals are imported in order to fulfill the demands of milk, milk, meat and its products. In addition, different pet animals are transported from Pakistan to various parts of the world, therefore, it is important to identify the current status and distribution of babesiosis throughout Pakistan in order to control the disease and draw attention for future research, diagnosis, treatment and control of this diseases. No work has been done on a complete review on up-to-date on blood protozoal disease burden in Pakistan. This article will provide about the complete background of babesiosis in ruminants, equines and pet animals, its current status, distribution, vectors in Pakistan and allopathic and ethnoveterinary treatments used against babesiosis. Babesiosis may be subclinical (apparently normal) and may be clinical with acute to chronic disease and sometimes fatal. Babesia is found and develops inside the erythrocytes (red blood cells). Clinically, it causes fever, fatigue, lethargy, pallor mucus membranes, malaise, cachexia, respiratory distress, jaundice, icterus, hemolytic anemia, hemoglobinuria, lymphadenopathy, chollangocytitis, hepatomegaly, and splenomegaly. Chemotherapy for babesiosis includes Imidocarb dipropionate, Diaminazine aceturate Atovaquone and Bupravaquone, Azithromycin, Quinuronium sulfate and Amicarbalidesio-thionate are most widely used. Supportive therapy includes multivitamins, fluid therapy, antipyretics intravenous fluids, and blood transfusions are used if necessary. In addition, there are certain ethnoveterinary (homeopathic) ingredients which having anti-babesial activity. As the resistance against these drugs is developing every day. New more specific long-lasting drugs should be developed for the treatment of Babesiosis. Further studies should be done on disease genome of different species of Babesia for vaccine development like malarial parasites.

2.
Biol Trace Elem Res ; 201(4): 1977-1986, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35676590

RESUMO

In this study, 336-day-old corn cob broilers were bought for the poultry experimental station during the months of May and June 2021. Before the arrival of chicks, the brooders, chick feeders, drinkers, humidity, temperature, and feeding management were controlled according to scientific patterns. These birds were randomly divided into seven groups and six replications of eight birds, viz. Group-A (positive control on basal diet only), Group-B (negative control on basal diet and HS), group-C (basal diet + simple Se 0.3 mg/kg feed), Group-D (basal diet + SeNP 0.3 mg/kg feed + HS), Group-E (BD + HS + chitosan), Group-F (BD + Se + COS), and Group-G (nano Se with chitosan 0.3 mg/kg + BD + HS). On the 42nd day of research, two birds were selected from each replication and sacrificed after blood collection. The initial data related to feeding intake, live body weight, and feed conversion ratio (FCR) were collected before slaughter. The intestinal samples were collected and immediately transferred to formalin after grass morphometry. The live body weight, FCR, feed intake, intestinal histomorphology, relative organ weight, and antioxidant parameters like MDA, SOD, and GPX were significant (P > 0.005) in all groups, with Group-G at the highest, followed by Groups-F, E, D, C, A, and B. Group-B (negative control group) was the most affected group in all aspects because of heat stress and only basal diet. It was concluded that heat stress highly causes a loss in performance, intestinal gross morphology, and histology in poultry, and increases stress conditions, whereas the selenium nanoparticle works to improve the body weight, FCR, and intestinal parameters.


Assuntos
Quitosana , Selênio , Animais , Ração Animal , Antioxidantes , Peso Corporal , Galinhas , Quitosana/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Resposta ao Choque Térmico , Selênio/farmacologia
3.
Aging (Albany NY) ; 12(10): 8987-8999, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414993

RESUMO

The epididymis plays a significant role as a quality control organ for long-term sperm storage, maturation, and fertilizing ability and perform filtration function to eliminate abnormal or residual spermatozoa by phagocytosis. However, the role of autophagy in spermiophagy during sperm storage in turtle epididymis still needs to be studied. In this study, we reported in vivo spermiophagy via the cellular evidence of lysosome engulfment and autophagy within the principal cells during sperm storage in the turtle epididymis. Using immunofluorescence, Lysosome associated membrane protein-1 (LAMP1) and microtubule-associate protein light chain 3 (LC3) showed strong immunosignals within the apical cytoplasm of epididymal epithelia during hibernation than non-hibernation. Co-immunolabeling of LAMP1 and LC3 was strong around the phagocytosed spermatozoa in the epididymal epithelia and protein signaling of LAMP1 and LC3 was confirmed by western blotting. During hibernation, ultrastructure showed epididymal principal cells were involved in spermiophagy and characterized by the membrane's concentric layers around phagocytosed segments of spermatozoa, degenerative changes in the sperm head and lysosome direct attachment, and with the existence of cellular components related to autophagy (autophagosome, autolysosome). In conclusion, spermiophagy occurs by lysosomal engulfment and autophagic activity within the principal cells of the turtle epididymis during sperm storage.


Assuntos
Autofagia/fisiologia , Epididimo , Espermatozoides , Animais , Epididimo/citologia , Epididimo/fisiologia , Hibernação/fisiologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Espermatozoides/citologia , Espermatozoides/fisiologia , Tartarugas
4.
Microsc Microanal ; 26(3): 542-550, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284081

RESUMO

Post-testicular maturation of spermatozoa is crucial for attaining the morphological and functional capabilities needed for successful fertilization. Epididymal epithelia offer a favorable environment for spermatozoa that are stored long term in the turtle epididymis; however, sperm-epithelial interactions during storage, which are enormously important for sperm functional and morphological maturation, are still largely unknown in turtles. The present study examined the epididymis during the sperm-storage period (November-April) in the Chinese soft-shelled turtle (Pelodiscus sinensis). Light and transmission electron microscopy were used to determine the cellular features of each epididymal segment (caput, corpus, and cauda) and their epithelial interactions with the spermatozoa. Spermatozoa were mainly located in the lumena of caput, corpus, and cauda epididymides. Numerous spermatozoa were bound to apical surfaces of the epithelia, and several were even embedded in the epithelial cytoplasm of the caput and corpus epididymides. No embedded spermatozoa were found in the cauda epididymis. In all epididymal segments, principal and clear cells showed the synthetic activity, evidenced by a well-developed endoplasmic reticulum network and high and low electron-dense secretory materials, respectively. Principal and clear cells in the caput and corpus segments showed embedded spermatozoa in electron-dense secretions and in the lipid droplets within the cytoplasm. No lysosomes were observed around the embedded spermatozoa. The lumena of the caput and corpus segments showed few apocrine and low electron density secretions. In the lumen of the cauda epididymidis, different secretions, such as holocrine with low and high electron density and their fragmentation, apocrine, and dictyosome, were found and are summarized. Altogether, sperm physical interactions with secretions either in the cytoplasm of epithelium or in the lumen may support the viability, morphological maintenance, and transfer of various proteins involved in long-term sperm storage in the turtle. This interaction could help us to understand the mechanisms of long-term sperm storage and provide more insights into the reproductive strategies of turtle sperm preservation.


Assuntos
Secreções Corporais/metabolismo , Epididimo/metabolismo , Epitélio/metabolismo , Tartarugas/metabolismo , Animais , Povo Asiático , Células Epiteliais , Humanos , Gotículas Lipídicas , Masculino , Microscopia Eletrônica de Transmissão , Reprodução , Espermatozoides
5.
Zebrafish ; 17(2): 83-90, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125963

RESUMO

Melanomacrophagic centers (MMCs) were studied in the liver of zebrafish using transmission electron microscope (TEM). The MMCs were located in the space of Disse (SD), and their pseudopodia protruded into the lumen of sinusoids. The degree of extension of body structure of MMCs in the SD was determined by the size of the phagocytosed content. An irregular or amoeboid nucleus was present. Vacuoles were occasionally present, both, in endothelium and MMCs. The cytoplasm of MMCs showed several engulfed structures. The most common structure was the presence of mitochondria of small to giant size and distorted shape with inconspicuous cristae. The product of mitochondrial degeneration accompanied by lysosomes contributed to the formation of lipofuscins. Besides, changes were also observed in rough endoplasmic reticulum (rER), the Golgi complex, and lysosomes. Occasionally, small to large fragments of the erythrocytes were found in the cytoplasm of MMCs. The rER encompassed the mitochondria and lipid droplets forming a membrane-like structure. Golgi complex were dilated. Lysosomes fused with such membrane-bound structures contributed to the formation of the lipofuscin. The results provide evidence of the role of liver-resident MMCs of zebrafish in phagocytosis of damaged organelles, clearance of the worn-out erythrocytes, and lipofuscin formation.


Assuntos
Lipofuscina/metabolismo , Fígado/ultraestrutura , Macrófagos/ultraestrutura , Peixe-Zebra/fisiologia , Animais , Feminino , Microscopia Eletrônica de Transmissão
6.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192184

RESUMO

The existence of telocytes (TCs) has not yet been established in the pancreases of aquatic reptiles. Here, we report TCs in the exocrine pancreas of Pelodiscus sinensis using transmission electron microscope (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) techniques. TCs surrounded the acini and ducts of the connective tissue of the exocrine pancreas and between lobules and gland cells. The cells were located preferably close to the blood vessels, interlobular ducts, and nerve fibers. Ultrastructurally, TCs exhibited small and large bodies with thick and thin portions, podoms, and podomers, and prolongations that form dichotomous branching with hetero-cellular and homo-cellular junctions. The podom (thick) portions showed caveolae, mitochondria, rough endoplasmic reticulum, and vesicles. The nucleus carries heterochromatin and is irregular in shape. The shape of TCs depends on the number of telopodes (Tps) bearing long, short, spindle, triangular, and "beads on a string" shapes with twisted, tortuous prolongations and ramifications. Shed extracellular vesicles and exosomes were found frequently released from projections and Tps within connective tissue in the vicinity of the acini and collagen fibers. IHC and IF results showed CD34+, α-SMA+, and vimentin+, long and triangle-shaped TCs, consistent with the TEM findings. The presence of shaded vesicles from TCs might implicate their possible role in immune surveillance, tissue regeneration as well as regulatory functions in the reptilian pancreas.


Assuntos
Comunicação Celular , Pâncreas/citologia , Pâncreas/ultraestrutura , Telócitos/fisiologia , Telócitos/ultraestrutura , Tartarugas , Animais , Biomarcadores , Exossomos/metabolismo , Imunofluorescência , Imuno-Histoquímica , Pâncreas/fisiologia
7.
Microsc Microanal ; 26(1): 148-156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31753050

RESUMO

The seminiferous tubule (ST) is the location of spermatogenesis, where mature spermatozoa are produced with the assistance of Sertoli cells. The role of extracellular vesicles in the direct communication between Sertoli-germ cells in the ST is still not fully understood. In this study, we reported multivesicular bodies (MVBs) and their source of CD63-enriched exosomes by light and ultrastructure microscopy during the reproductive phases of turtles. Strong CD63 immunopositivity was detected at the basal region in the early and luminal regions of the ST during late spermatogenesis by immunohistochemistry (IHC), immunofluorescence (IF), and western blot (WB) analysis. Labeling of CD63 was detected in the Sertoli cell cytoplasmic processes that surround the developing germ cells during early spermatogenesis and in the lumen of the ST with elongated spermatids during late spermatogenesis. Furthermore, ultrastructure analysis confirmed the existence of numerous MVBs in the Sertoli cell prolongations that surround the round and primary spermatogonia during acrosome biogenesis and with the embedded heads of spermatids in the cytoplasm of Sertoli cells. Additionally, in spermatids, Chrysanthemum flower centers (CFCs) generated isolated membranes involved in MVBs and autophagosome formation, and their fusion to form amphiosomes was also observed. Additionally, autophagy inhibition by 3-methyladenine (after 24 h) increased CD63 protein signals during late spermatogenesis, as detected by IF and WB. Collectively, our study found MVBs and CD63 rich exosomes within the Sertoli cells and their response to autophagy inhibition in the ST during the spermatogenesis in the turtle.


Assuntos
Exossomos/ultraestrutura , Corpos Multivesiculares/ultraestrutura , Túbulos Seminíferos/fisiologia , Túbulos Seminíferos/ultraestrutura , Espermatogênese , Tetraspanina 30/análise , Tartarugas/fisiologia , Animais , Western Blotting , Exossomos/química , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Microscopia de Fluorescência , Corpos Multivesiculares/química
8.
Fish Shellfish Immunol ; 97: 173-181, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31857223

RESUMO

It is conceivable that pathological conditions can cause intestinal barrier disruption and innate immune dysfunction. However, very limited information has been reported on the effect of seasonal variance on intestinal barriers and innate immunity. The present study was designed to investigate the seasonal variance in intestinal epithelial barriers and the associated innate immune response of turtle intestines during hibernation and nonhibernation periods. Goblet cells (GCs) demonstrated dynamic actions of the mucosal barrier with strong Muc2 protein expression during hibernation. However, weak Muc2 expression during nonhibernation was confirmed by immunohistochemistry, immunofluorescence and immunoblotting. Furthermore, light and transmission electron microscopy revealed that the hypertrophy of GCs resulted in the hypersecretion of mucus granules (MGs) and created a well-developed mucosal layer during hibernation. The absorptive cells (ACs), forming a physical barrier of tight junctions, and desmosomes were firmly anchored during hibernation. Conversely, during nonhibernation, the integrity of tight junctions, adherence junctions and desmosomes was noticeable expanded, causing increased paracellular permeability. As further confirmation, there was strong zonula occluden-1 (ZO-1) and connexins 43 (Cx43) protein expression during hibernation and weak ZO-1 and Cx43 expression during nonhibernation. Moreover, the expression level of the innate immune response proteins Toll-like receptors 2 and 4 (TLR2 and 4) were enhanced during hibernation and were reduced during nonhibernation. These results provide rich information about the seasonal fluctuations that interrupt intestinal epithelial barriers and innate immune response, which might be essential for protection and intestinal homeostasis.


Assuntos
Imunidade Inata , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Estações do Ano , Tartarugas/imunologia , Tartarugas/fisiologia , Animais , Células Epiteliais/imunologia , Células Caliciformes/imunologia , Hibernação , Hipertrofia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Mucina-2/genética , Junções Íntimas/metabolismo
9.
Animals (Basel) ; 9(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683774

RESUMO

The ductuli efferentes (DE) form a transit passage for the passage of spermatozoa from the rete testis to the epididymis. After spermiation, various epithelial secretory proteins are transferred via extracellular vesicles (EVs) to the spermatozoa for their maturation and long-term viability. The aim of the present study was to investigate the distribution, classification, and source of multivesicular bodies (MVBs) and their EVs in the epithelia of the efferentes duct in a turtle species, the soft-shelled freshwater turtle Pelodiscus sinensis by using light and transmission electron microscopy. The results showed that CD63 as a classical exosome marker was strongly immunolocalized within the apical and lateral cytoplasm of the ciliated cells (CC) and moderate to weak in the non-ciliated cells (NCC) of DE. The ultrastructure revealed that early endosome was present at the basement membrane and perinuclear cytoplasm of both CC and NCC, whereas MVBs were located over the nucleus in the cytoplasm of NCC and adjacent to the basal bodies of cilia within the CC. Many EVs, as sources of MVBs, were located within the blebs that were attached to the cilia of CC, within the apical blebs from NCC, and the lateral spaces of CC and NCC. There was ultrastructure evidence of EVs associated with spermatozoa in the lumens of DE. Collectively, the present study provides cytological evidence that the DE epithelium secreted EVs to the lumen by (1) apical blebs, (2) ciliary blebs, and (3) from the basolateral region. These EVs were associated with spermatozoa in the DE lumen of this turtle. Characterization and cellular distribution of these EVs in the DE of a turtle may provide a study model to further investigate the transferring of micromolecules via EVs to the spermatozoa.

10.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683886

RESUMO

Many studies have focused on how autophagy plays an important role in intestinal homeostasis under pathological conditions. However, its role in the intestine during hibernation remains unclear. In the current study, we characterized in vivo up-regulation of autophagy in enterocytes of the small intestine of Chinese soft-shelled turtles during hibernation. Autophagy-specific markers were used to confirm the existence of autophagy in enterocytes through immunohistochemistry (IHC), immunofluorescence (IF), and immunoblotting. IHC staining indicated strong, positive immunoreactivity of the autophagy-related gene (ATG7), microtubule-associated protein light chain (LC3), and lysosomal-associated membrane protein 1 (LAMP1) within the mucosal surface during hibernation and poor expression during nonhibernation. IF staining results showed the opposite tendency for ATG7, LC3, and sequestosome 1 (p62). During hibernation ATG7 and LC3 showed strong, positive immunosignaling within the mucosal surface, while p62 showed strong, positive immunosignaling during nonhibernation. Similar findings were confirmed by immunoblotting. Moreover, the ultrastructural components of autophagy in enterocytes were revealed by transmission electron microscopy (TEM). During hibernation, the cumulative formation of phagophores and autophagosomes were closely associated with well-developed rough endoplasmic reticulum in enterocytes. These autophagosomes overlapped with lysosomes, multivesicular bodies, and degraded mitochondria to facilitate the formation of autophagolysosome, amphisomes, and mitophagy in enterocytes. Immunoblotting showed the expression level of PTEN-induced kinase 1 (PINK1), and adenosine monophosphate-activated protein kinase (AMPK) was enhanced during hibernation. Furthermore, the exosome secretion pathway of early-late endosomes and multivesicular bodies were closely linked with autophagosomes in enterocytes during hibernation. These findings suggest that the entrance into hibernation is a main challenge for reptiles to maintain homeostasis and cellular quality control in the intestine.


Assuntos
Autofagia , Enterócitos/citologia , Hibernação , Intestino Delgado/citologia , Tartarugas/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagossomos/metabolismo , Enterócitos/metabolismo , Intestino Delgado/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Tartarugas/genética
11.
Fish Shellfish Immunol ; 95: 644-649, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31704204

RESUMO

Exosomes are secreted from various cells by multivesicular bodies (MVBs) that fuse with the plasma membrane and are involved in the intestinal immune response to maintain intestinal homeostasis. Here, we demonstrate the ultrastructural characteristics of MVBs and their exosomes in immune-related cells of the zebrafish intestine, including goblet cells (GCs), mitochondria-rich cells (MRCs), high endothelial cells (HECs) and lymphocytes. In GCs, MVBs with a low electron density were present under the nucleus. MVBs with exosomes were observed among mucin granules. "Heterogeneous" MVBs were identified within the cytoplasm around mucin granules. MRCs were observed in the intestinal mucosa epithelium, including "open-type" MRCs and "close-type" MRCs. Typical MVBs were identified in these MRCs. MVBs with a variety of exosomes were observed in the HECs of the capillary located in the lamina propria (LP). The HEC basement membrane budded outward to LP cells to form a plurality of basal blebs, later containing a large number of exosomes. MVBs also existed in the LP lymphocytes. A schematic diagram of the ultrastructural distribution of MVBs and their exosomes in the intestinal mucosal immune-related cells was created. Our findings provide cytological evidence for the source and ultrastructural distribution of exosomes within the different intestine cells of zebrafish. Component analysis and immunological functions of exosomes require future study.


Assuntos
Exossomos/imunologia , Exossomos/ultraestrutura , Intestinos/citologia , Intestinos/imunologia , Corpos Multivesiculares/imunologia , Peixe-Zebra/imunologia , Animais , Transporte Biológico , Feminino , Microscopia Eletrônica de Transmissão , Corpos Multivesiculares/ultraestrutura
12.
Microsc Microanal ; 25(6): 1341-1351, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31656212

RESUMO

The present study was designed to investigate the in vivo biological processes of multivesicular bodies (MVBs) and exosomes in mitochondria-rich cells (MRCs), goblet cells (GCs), and absorptive cells (ACs) in turtle intestines during hibernation. The exosome markers, cluster of differentiation 63 (CD63) and tumor susceptibility gene 101 (TSG101), were positively expressed in intestinal villi during turtle hibernation. The distribution and formation processes of MVBs and exosomes in turtle MRCs, GCs, and ACs were further confirmed by transmission electron microscopy. During hibernation, abundantly secreted early endosomes (ees) were localized in the luminal and basal cytoplasm of the MRCs and ACs, and late endosomes (les) were dispersed with the supranuclear parts of the MRCs and ACs. Many "heterogeneous" MVBs were identified throughout the cytoplasm of the MRCs and ACs. Interestingly, the ees, les, and MVBs were detected in the cytoplasm of the GCs during hibernation; however, they were absent during nonhibernation. Furthermore, the exocytosis pathways of exosomes and autophagic vacuoles were observed in the MRCs, GCs, and ACs during hibernation. In addition, the number of different MVBs with intraluminal vesicles (ILVs) and heterogeneous endosome-MVB-exosome complexes was significantly increased in the MRCs, GCs, and ACs during hibernation. All these findings indicate that intestinal epithelial cells potentially perform a role in the secretion of MVBs and exosomes, which are essential for mucosal immunity, during hibernation.


Assuntos
Células Epiteliais/fisiologia , Exossomos/metabolismo , Hibernação , Mucosa Intestinal/fisiologia , Corpos Multivesiculares/metabolismo , Tartarugas , Animais , Biomarcadores/análise , Células Epiteliais/ultraestrutura , Exossomos/química , Exossomos/ultraestrutura , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Corpos Multivesiculares/química , Corpos Multivesiculares/ultraestrutura
13.
Micron ; 126: 102747, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505373

RESUMO

Despite the exploration of mitochondria-rich cells (MRCs) in different animal classes, very limited information has been documented about MRCs in reptiles. The present study was designed to investigate the effect of seasonal variation on the cell ultrastructure and ion transport protein activity of MRCs during hibernation and non-hibernation of Chinese soft-shelled turtle's intestine. Transmission electron microscopy revealed that, during hibernation the high-density cytoplasm of MRCs occupied large cross-sectional area and showed heterogeneous abundance of mitochondria and an expanded extensive tubular system as compared to non-hibernation. During hibernation the cytoplasm of MRCs exhibited more mitochondrial vacuolization, autophagosomes, phagophore formation and well-structured endoplasmic reticulum. During hibernation, MRCs connected with absorptive cells through wide interdigitation, and created tight junction and more desmosomes as compared to non-hibernation. Immunohistochemistry and immunofluorescence showed, the strong immunopositive reactions and immunosignaling of Na+/K+-ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC) at basolateral region of mucosal surface of intestine during hibernation. However, weak immunopositive reactions and immunosignaling of NKA and NKCC during non-hibernation. The statistical analysis showed that the number and size of MRCs with NKA-associated immunoreactivity were significantly increased during hibernation. NKA and NKCC mRNA expression was significantly increased during hibernation via qPCR. Further confirmed, the intensity of NKA and NKCC proteins was more elevated during hibernation than non-hibernation shown by immunobloting. However, the concentrations of the plasma ions Na+ and Cl- were significantly higher during hibernation; conversely, K+ concentration was significantly higher during non-hibernation. The findings suggest that the potential role of MRCs is affected by seasonal fluctuations, during which intestinal homeostasis and hydromineral balance are essential for turtles.


Assuntos
Células Epiteliais/ultraestrutura , Intestino Delgado/citologia , Mitocôndrias/enzimologia , Estações do Ano , ATPase Trocadora de Sódio-Potássio/química , Tartarugas , Animais , Hibernação , Microscopia Eletrônica de Transmissão
14.
Aging (Albany NY) ; 11(15): 5757-5768, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413207

RESUMO

In this study, we investigated the localization, morphological features and cellular interactions of telocytes in the rat testicular interstitium. Transmission electron microscopy (TEM) and immunohistochemical and immunofluorescence analyses of the rat testicular interstitium showed a distinct layer of telocytes surround the seminiferous tubules along with inner layer of peritubular myoid cells. The majority of the telocytes were made up of a small cell body and moniliform prolongations that contained mitochondria and secretory vesicles. Some other telocytes were observed possessing large cell bodies. Within the testicular interstitium, the telocytes formed a network connecting peritubular myoid cells, Leydig cells as well as blood vessels. Immunohistochemical and double immunofluorescence analyses showed that rat testicular telocytes express CD34 and PDGFRα, but are negative for vimentin and α-SMA. Our findings demonstrate the presence of telocytes in the rat testicular interstitium. These cells interact with peritubular myoid cells, seminiferous tubules, Leydig cells and blood vessels via long telopode extensions, which suggests their vital role in the intercellular communication between different cell types within the rat testis.


Assuntos
Telócitos/ultraestrutura , Testículo/citologia , Actinas/metabolismo , Animais , Antígenos CD34/metabolismo , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ratos , Ratos Sprague-Dawley , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telócitos/metabolismo , Telopódios/ultraestrutura , Testículo/metabolismo
15.
Anim Reprod Sci ; 205: 134-143, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31060923

RESUMO

Apoptosis is a physiological phenomenon that has been recognized as a cause of sperm death during cryopreservation in endothermic mammals. There is, however, no data on its role in sperm death during cooled storage in ectothermic animals. In this study, spermatozoa from the epididymis of soft-shelled turtle were investigated to identify the mechanism of spermatozoa apoptotic-like changes during storage at 4 °C. In this study, there was survival of spermatozoa for more than 40 Days when stored at 4 °C. During cooled storage, sperm kinematics was evaluated using CASA system. Values for all sperm motility variables decreased during the period of storage; while for velocity curvilinear (VCL) there was a further decrease after 20 Days of storage. Results from flow cytometry analysis indicated that there was a significant increase in the percentage of apoptotic spermatozoa, but there was no change in the percentage of necrosis. Furthermore, the concentration of cellular ROS increased after 20 Days of storage at 4 °C. The results using JC-1 staining indicated there was a decrease in MMP of spermatozoa as the duration of storage at 4 °C increased. Nuclear fragmentation of spermatozoa was observed using TEM on Day 30 of storage. There were large amounts of pro-apoptotic cytochrome c (Cytc) and cleaved caspase-9/3 proteins detected using western blot analysis after 30 days of spermatozoa storage at 4 °C. These findings indicate ROS generation induces mitochondria damage after 20 days of storage at 4 °C, which can induce spermatozoa apoptotic-like changes during storage of soft-shelled turtle spermatozoa.


Assuntos
Apoptose/fisiologia , Temperatura Baixa , Epididimo/citologia , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Tartarugas/fisiologia , Animais , Criopreservação/veterinária , Masculino , Espécies Reativas de Oxigênio
16.
Aging (Albany NY) ; 11(7): 1990-2002, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926766

RESUMO

Hibernation is an adaptive survival strategy in response to cold and foodless winter. To determine the underlying mechanisms of seasonal adaptions, transcriptome sequencing studies have been conducted in bears, ground squirrels and bats. Despite advances in identifying differentially expressed genes involved in metabolism, the precise mechanisms of these physiological adaptions remain unclear. In the present study, we examined liver of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) and found that the contents of lipid droplet (LD) and triglyceride (TG) were significantly decreased during hibernation. Increases in mRNA expression levels of lipolysis-related genes and decreased levels of lipogenesis-related genes during hibernation indicated that LD hydrolysis was stimulated during hibernation. To continuously release fatty acids (FAs) from LD, adipose triglyceride lipase (ATGL) was recruited and accumulated on the surface of LDs via activation of Cyclic Adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling. Meanwhile, increased phosphorylation of the LD-associated protein, perilipin-5, activated the enzyme activity of ATGL via interaction between comparative gene identification-58 (CGI-58) and ATGL. Taken together, our results indicated that ATGL accumulation on the LD surface and its induced enzyme activity during hibernation promoted LD breakdown in the liver of Chinese Soft-Shelled Turtle (Pelodiscus sinensis), thereby enhancing mitochondrial ß-oxidation to maintain energy hemostasis.


Assuntos
Hibernação/fisiologia , Gotículas Lipídicas/metabolismo , Tartarugas/metabolismo , Animais , China , Hibernação/genética , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/ultraestrutura , Lipólise/genética , Lipólise/fisiologia , Fígado/metabolismo , Fígado/ultraestrutura , Perilipina-5/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Tartarugas/genética
17.
Fish Shellfish Immunol ; 88: 578-586, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30885742

RESUMO

Intercellular communication of gut epithelial cells is critical to gut mucosal homeostasis. Exosomes are important intercellular mediators in communication between cell to cell. Although many literature focus on the immunologic roles in the gut by the exosomes, the biological process of exosomes in the absorptive cells remains unknown. Uncovering the distribution, classification and formation process of multivesicular bodies (MVBs) and their exosomes in the absorptive cells of the zebrafish gut, is urgently needed to establish a platform for immunological research of fish gut exosomes. The expression levels of CD63 and TSG101 were different among the three segments of the gut, and they were enriched at the apex of the mid gut villi. The characteristics of MVBs and their exosomes in the absorptive cells were further revealed by transmission electron microscopy (TEM). Early endosomes (ee) were mainly present in the apical and basal cytoplasm of absorptive cells. Late endosomes (le) were mostly distributed with the supranuclear part of these cells. "Heterogeneous" MVBs were detected underlying the apical membranes of absorptive cells. Many exosomes with some MVB-like structures occurred in the lumen, indicating that the release process was mainly through apical secretion. Various MVBs with exosomes and the endosome-heterogeneous MVB-exosome complex existed widely in the mid gut absorptive cells, concluding that zebrafish as a potential model for in vivo MVBs and their exosomes research. All the results were summarized in a schematic diagram illustrating the morphological characteristics of gut MVBs and their exosomes in zebrafish.


Assuntos
Exossomos/ultraestrutura , Trato Gastrointestinal/citologia , Corpos Multivesiculares/ultraestrutura , Peixe-Zebra , Animais , Trato Gastrointestinal/imunologia , Imunidade nas Mucosas , Microscopia Eletrônica de Transmissão
18.
Reprod Biol Endocrinol ; 17(1): 19, 2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30738428

RESUMO

BACKGROUND: Steroidogenesis is an indispensable process that is indirectly associated with spermatogenesis in the Leydig cell (LC) to utilize the lipid droplets (LDs) that are critical to maintaining normal testosterone synthesis. The regulation of LD mobilization, known as lipophagy, in the LC is still largely unknown. METHOD: In the present study, the LC of the Chinese soft-shelled turtle was investigated to identify the steroidogenic activity and lipophagy during the annual reproductive cycle by light microscopy, immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM). RESULTS: The LC showed a dynamic steroidogenic function with strong activity of 3ß-HSD, vimentin and tubular ER during hibernation by IHC and TEM. The tubulo-vesicular ER had a weak immunopositive reaction for 3ß-HSD in the LC during reproductive phase, suggesting persistent steroidogenic activity. ORO staining and TEM demonstrated that a larger number of LDs had accumulated in the LC during hibernation than in the reproductive phase. These LDs existed in close association with mitochondria and lysosomes by being dynamically surrounded by intermediate filaments to facilitate LD utilization. Lysosomes were found directly attached to large LDs, forming an autophagic tube and engulfing LDs, suggesting that micro-lipophagy occurs during hibernation. Furthermore, the IHC of ATG7 (Autophagy Related Gene 7) and the IF of the LC3 (Microtubule-associated protein light chain 3), p62 (Sequestosome-1 (SQSTM1) and LAMP1(Lysosomal-associated membrane protein 1) results demonstrated strong expression, and further confirmation by TEM showed the existence of an autophagosome and an autolysosome and their fusion during the hibernation season. CONCLUSION: In conclusion, the present study provides clear evidence of LD consumption in the LC by lipophagy, lysosome and mitochondria during the hibernation period, which is a key aspect of steroidogenesis in the Chinese soft-shelled turtle.


Assuntos
Autofagia/fisiologia , Células Intersticiais do Testículo/metabolismo , Metabolismo dos Lipídeos , Esteroides/metabolismo , Tartarugas/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Hibernação/fisiologia , Células Intersticiais do Testículo/ultraestrutura , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Reprodução/fisiologia , Tartarugas/fisiologia
19.
Fish Shellfish Immunol ; 81: 83-91, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29960063

RESUMO

Despite many studies being conducted over the past few decades, the origin of autophagosomal membranes remains unclear. The present study aimed to uncover the formation process of autophagosomal membranes in hepatocytes of zebrafish (Danio rerio), a model organism in medical science. Immunohistochemistry of zebrafish hepatocytes indicated that light chain 3-like protein 2 (LC3-II) is highly active in some hepatocytes, but poorly expressed in others. Under transmission electron microscopy, the amount of autophagosomes (APs) varied in different hepatocytes. When the endoplasmic reticulum (ER) is dispersed in the cytoplasm, few isolation membranes (IMs) and APs were observed. Subsequently, when the ER assembles into a particular "lamellar structure" (LS), IMs arise from it and extend to enwrap the mitochondria. With further aggregation of the ER, the LS developed into an over twenty-layered structure, and mitophagy was more obvious in the hepatocytes and cavities appeared in mitochondria. Finally, most ERs were assembled into several LSs. At this point, mitophagy was most active in the hepatocytes. Thereafter, glycogen and lipid droplet increased gradually, while the LS degenerated and ER scatter increased. Then, the glycogen and lipid droplets dominated the hepatocellular cytoplasm. After suppressing the formation of autophagosomes using 3-Methyladenine (3-MA), the LS could no longer be visualized in the hepatocellular cytoplasm, and mitophagy decreased drastically. Taken together, the results suggested that this LS in the hepatocytes of zebrafish, might be another manifestation of a pre-autophagosomal structure in zebrafish liver, analogous to the omegasome in yeast or the ER-IM complex in mammalian cell lines. Furthermore, selective mitophagy and consequent cyclic utilization of its products were probably relevant to dynamic cycle of the hepatocellular cytoplasm.


Assuntos
Autofagossomos/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Hepatócitos/citologia , Mitofagia , Peixe-Zebra/fisiologia , Animais , Hepatócitos/ultraestrutura , Imuno-Histoquímica , Fígado/citologia , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...