Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881329

RESUMO

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Assuntos
Modelos Animais de Doenças , Duplicação Gênica , Quinases Associadas a Receptores de Interleucina-1 , Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Animais , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos , Sistemas CRISPR-Cas/genética , Comportamento Animal , Masculino
2.
Front Immunol ; 14: 1183273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275873

RESUMO

Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods: We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results: Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion: Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Masculino , Feminino , Humanos , Animais , Camundongos , Autoimunidade/genética , Mutação com Ganho de Função , Mutação , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT1/genética
3.
Hum Mol Genet ; 32(15): 2485-2501, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37171606

RESUMO

ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Microcefalia , Talassemia alfa , Animais , Masculino , Camundongos , Talassemia alfa/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia/genética , Mutação , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Humanos
4.
Gene Ther ; 29(3-4): 147-156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363035

RESUMO

Glaucoma is a prevalent neurodegenerative disease that is characterized by progressive visual field loss. It is the leading cause of irreversible blindness in the world. The main risk factor for glaucoma is elevated intraocular pressure that results in the damage and death of retinal ganglion cells (RGCs) and their axons. The death of RGCs has been shown to be apoptotic. We tested the hypothesis that blocking the activation of apoptosis may be an effective strategy to prevent RGC death and preserve functional vision in glaucoma. In the magnetic microbead mouse model of induced ocular hypertension, inhibition of RGC apoptosis was targeted through viral-mediated ocular delivery of the X-linked inhibitor of apoptosis (XIAP) gene, a potent caspase inhibitor. Pattern electroretinograms revealed that XIAP therapy resulted in significant protection of both somal and axonal RGC function in glaucomatous eyes. Histology confirmed that the treated optic nerves showed preservation of axon counts and reduced glial cell infiltration. These results show that XIAP is able to provide both functional and structural protection of RGCs in the microbead model of glaucoma and provide important proof-of-principle for XIAP's efficacy as a neuroprotective treatment for glaucoma.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Axônios , Modelos Animais de Doenças , Terapia Genética , Glaucoma/genética , Glaucoma/terapia , Pressão Intraocular , Camundongos , Células Ganglionares da Retina/metabolismo
5.
EMBO Mol Med ; 13(5): e13228, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724658

RESUMO

Tandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation. Duplication correction of this mouse was achieved by implementing a single-guide RNA (sgRNA) CRISPR/Cas9 approach. This strategy precisely removed a duplication mutation in vivo, restored full-length dystrophin expression, and was accompanied by improvements in both histopathological and clinical phenotypes. We conclude that CRISPR/Cas9 represents a powerful tool to accurately model and treat tandem duplication mutations. Our findings will open new avenues of research for exploring the study and therapeutics of duplication disorders.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas , Distrofina/genética , Edição de Genes , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...