Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(7): 5403-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373150

RESUMO

A series of Ru/Carbon catalysts (0.5-6.0 wt%) were prepared by impregnation method. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), CO-chemisorption, surface area and pore-size distribution measurements. The catalytic activities were evaluated for the vapor phase hydrogenation of nitrobenzene. The dispersion measured by CO-uptake values suggests that a decrease of dispersion is observed with increasing Ru loading on carbon support. These findings are well supported by the crystallite size measured from XRD measurements. XPS study reveals the formation of Ru0 after reduction at 573 K for 3 h. The catalysts exhibit high conversion/selectivity at 4.5 wt% Ru loading during hydrogenation reaction. The particle size measured from CO-chemisorption and TEM analysis are related to the TOF during the hydrogenation reaction. Ru/C catalysts are found to show higher conversion/selectivities during hydrogenation of nitrobenzene to aniline.

2.
J Nanosci Nanotechnol ; 15(7): 5391-402, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373149

RESUMO

Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.


Assuntos
Acroleína/química , Glicerol/química , Molibdênio/química , Ácidos Fosfóricos/química , Dióxido de Silício/química , Vanádio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...