Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 44(9): 3572-9, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15736966

RESUMO

A few members of a widespread class of bacterial and archaeal flavo-diiron proteins, dubbed FprAs, have been shown to function as either oxidases (dioxygen reductases) or scavenging nitric oxide reductases, but the questions of which of these functions dominates in vivo for a given FprA and whether all FprAs function as oxidases or nitric oxide reductases remain to be clarified. To address these questions, an FprA has been characterized from the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris. The gene encoding this D. vulgaris FprA lies downstream of an operon encoding superoxide reductase and rubredoxin, consistent with an O(2)-scavenging oxidase function for this FprA. The recombinant D. vulgaris FprA can indeed serve as the terminal component of an NADH oxidase. However, this oxidase turnover results in irreversible inactivation of the enzyme. On the other hand, the recombinant D. vulgaris FprA shows robust anaerobic nitric oxide reductase activity in vitro and also protects a nitric oxide-sensitive Escherichia coli strain against exposure to exogenous nitric oxide. It is, therefore, proposed that this D. vulgaris FprA functions as a scavenging nitric oxide reductase in vivo and that this activity protects D. vulgaris against anaerobic exposure to nitric oxide. The location of a gene encoding a second FprA homologue in the D. vulgaris genome also suggests its involvement in nitrogen oxide metabolism.


Assuntos
Desulfovibrio vulgaris/enzimologia , Flavoproteínas/química , Sequestradores de Radicais Livres/metabolismo , Ferro/química , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Fenômenos Químicos , Físico-Química , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Sequestradores de Radicais Livres/antagonistas & inibidores , Sequestradores de Radicais Livres/química , Ferro/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/química , Oxirredutases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
2.
Biochemistry ; 42(46): 13625-36, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14622009

RESUMO

The Rieske dioxygenase, anthranilate 1,2-dioxygenase, catalyzes the 1,2-dihydroxylation of anthranilate (2-aminobenzoate). As in all characterized Rieske dioxygenases, the catalytic conversion to the diol occurs within the dioxygenase component, AntAB, at a mononuclear iron site which accepts electrons from a proximal Rieske [2Fe-2S] center. In the related naphthalene dioxygenase (NDO), a conserved aspartate residue lies between the mononuclear and Rieske iron centers, and is hydrogen-bonded to a histidine ligand of the Rieske center. Engineered substitutions of this aspartate residue led to complete inactivation, which was proposed to arise from elimination of a productive intersite electron transfer pathway [Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) J. Bacteriol. 181, 1831-1837]. Substitutions of the corresponding aspartate, D218, in AntAB with alanine, asparagine, or glutamate also resulted in enzymes that were completely inactive over a wide pH range despite retention of the hexameric quaternary structure and iron center occupancy. The Rieske center reduction potential of this variant was measured to be approximately 100 mV more negative than that for the wild-type enzyme at neutral pH. The wild-type AntAB became completely inactive at pH 9 and exhibited an altered Rieske center absorption spectrum which resembled that of the D218 variants at neutral pH. These results support a role for this aspartate in maintaining the protonated state and reduction potential of the Rieske center. Both the wild-type and D218A variant AntABs exhibited substrate-dependent rapid phases of Rieske center oxidations in stopped-flow time courses. This observation does not support a role for this aspartate in a facile intersite electron transfer pathway or in productive substrate gating of the Rieske center reduction potential. However, since the single turnovers resulted in anthranilate dihydroxylation by the wild-type enzyme but not by the D218A variant, this aspartate must also play a crucial role in substrate dihydroxylation at or near the mononuclear iron site.


Assuntos
Ácido Aspártico/química , Histidina/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Acinetobacter/genética , Substituição de Aminoácidos , Ácido Aspártico/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ditionita/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Oxigenases de Função Mista/genética , Modelos Moleculares , NADP/metabolismo , Oxirredução , Prótons , Proteínas Recombinantes , Espectrofotometria Ultravioleta/métodos
4.
Inorg Chem ; 37(25): 6418-6427, 1998 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-11670761

RESUMO

The crystal structures of [Cu(bpnp)(SCN)].NH(4)SCN (1), [Cu(bpnp)(CH(3)COO)].CH(3)OH.C(8)H(10) (2), and [Cu(bpnp)ClO(4)] (3) [Hbpnp = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate. The mononuclear complex [Cu(bpnp)(SCN)].NH(4)SCN crystallizes in the triclinic space group P&onemacr; with a = 10.796(2) Å, b = 10.804(2) Å, c = 12.559(2) Å, alpha = 71.38(1) degrees, beta = 72.68(1) degrees, gamma = 61.69(1) degrees, and Z = 2. The mononuclear acetate [Cu(bpnp)(CH(3)COO)].CH(3)OH.C(8)H(10) crystallizes in the triclinic space group P&onemacr; with a = 10.480(6) Å, b = 12.116(4) Å, c = 12.547(3) Å, alpha = 98.77(3) degrees, beta = 113.37(3) degrees, gamma = 100.78(3) degrees, and Z = 2. The binuclear perchlorate complex crystallizes in the monoclinic space group C2/c with a = 13.417(3) Å, b = 20.095(2) Å, c= 16.401(2) Å, alpha = 102.21(2) degrees, and Z = 8. The coordination plane in all these complexes is comprised of the tertiary amine and two pyridine nitrogens. The fourth equatorial position is occupied by SCN(-)/CH(3)COO(-) in the mononuclear complexes but by the coordinated phenolate ion from the adjacent molecule in the perchlorate complex, resulting in its dimerization. The unusual occupation of phenolate ion in the axial site is possibly due to the steric constraint at copper imposed by the 5,5,6-chelate ring sequence. The thiocyanate/acetate coordination geometry is reminiscent of the active site of the radical copper enzyme galactose oxidase (GOase) with an axial phenolate and equatorial SCN(-)/CH(3)COO(-) ligands. Further, the present complexes exhibit several spectral features also similar to this enzyme. The addition of chloride or thiocyanate or acetate ions dissociates the dimeric structure of the perchlorate complex to produce the corresponding monomeric derivatives. The study of the interaction of the acetate complex with N(3)(-) and CN(-) ions provide insight into the anion binding properties of the enzyme. The sensitivity of the acetate complex to protons suggests the facile dissociation of the axial phenolate which then acts as a base to bind to protons. The implication of this reaction to the GOase mechanism is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...