Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(8): 2891-2902, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33544106

RESUMO

The efficient utilization of solar energy has received tremendous interest due to the increasing environmental and energy concerns. The present paper discusses the efficient integration of a plasmonic photocatalyst (Ag/AgCl) with an iron-based metal-organic framework (MIL-88A(Fe)) for boosting the visible light photoreactivity of MIL-88A(Fe). Two composites of Ag/AgCl@MIL-88A(Fe), namely MAG-1 and MAG-2 (stoichiometric ratio of Fe to Ag is 5 : 1 and 2 : 1), were successfully synthesized via facile in situ hydrothermal methods followed by UV reduction. The synthesized composite materials are characterized by FTIR, PXRD, UVDRS, PL, FESEM/EDX, TEM and BET analyses. The Ag/AgCl@MIL-88A(Fe) (MAG-2) hybrid system shows excellent photocatalytic activity for the degradation of p-nitrophenol (PNP), rhodamine B (RhB), and methylene blue (MB) under sunlight. We found that 91% degradation of PNP in 80 min, 99% degradation of RhB in 70 min and 94% degradation of MB in 70 min have taken place by using MAG-2 as a catalyst under sunlight. The superior activity of Ag/AgCl@MIL-88A(Fe) (MAG-2) is attributed to the synergistic effects from the surface plasmon resonance (SPR) of Ag NPs and the electron transfer from MIL-88A(Fe) to Ag nanoparticles for effective separation of electron-hole pairs. Furthermore, the mechanism of degradation of PNP, RhB and MB is proposed by analyzing the electron transfer pathway in Ag/AgCl@MIL-88A(Fe).

2.
Access Microbiol ; 1(3): e000019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32974515

RESUMO

The genus Chryseobacterium was formally established in 1994 and contains 112 species with validly published names. Most of these species are yellow or orange coloured, and contain a flexirubin-type pigment. The genomes of 83 of these 112 species have been sequenced in view of their importance in clinical microbiology and potential applications in biotechnology. The National Center for Biotechnology Information taxonomy browser lists 1415 strains as members of the genus Chryseobacterium , of which the genomes of 94 strains have been sequenced. In this study, by comparing the 16S rDNA and the deduced proteome sequences, at least 20 of these strains have been proposed to represent novel species of the genus Chryseobacterium . Furthermore, a yellow-coloured bacterium isolated from dry soil in the USA (and identified as Flavobacterium sp. strain B-14859) has also been reconciled as a novel member of the genus Chryseobacterium based on the analysis of 16S rDNA sequences and the presence of flexirubin. Yet another bacterium (isolated from a water sample collected in the Western Ghats of India and identified as Chryseobacterium sp. strain WG4) was also found to represent a novel species. These proposals need to be validated using polyphasic taxonomic approaches.

3.
Microb Genom ; 4(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29620507

RESUMO

The order Sphingomonadales is a taxon of bacteria with a variety of physiological features and carotenoid pigments. Some of the coloured strains within this order are known to be aerobic anoxygenic phototrophs that contain characteristic photosynthesis gene clusters (PGCs). Previous work has shown that majority of the ORFs putatively involved in the biosynthesis of C40 carotenoids are located outside the PGCs in these strains. The main purpose of this study was to understand the genetic basis for the various colour/carotenoid phenotypes of the strains of Sphingomonadales. Comparative analyses of the genomes of 41 strains of this order revealed that there were different patterns of clustering of carotenoid biosynthesis (crt) ORFs, with four ORF clusters being the most common. The analyses also revealed that co-occurrence of crtY and crtI is an evolutionarily conserved feature in Sphingomonadales and other carotenogenic bacteria. The comparisons facilitated the categorisation of bacteria of this order into four groups based on the presence of different crt ORFs. Yellow coloured strains most likely accumulate nostoxanthin, and contain six ORFs (group I: crtE, crtB, crtI, crtY, crtZ, crtG). Orange coloured strains may produce adonixanthin, astaxanthin, canthaxanthin and erythroxanthin, and contain seven ORFs (group II: crtE, crtB, crtI, crtY, crtZ, crtG, crtW). Red coloured strains may accumulate astaxanthin, and contain six ORFs (group III: crtE, crtB, crtI, crtY, crtZ, crtW). Non-pigmented strains may contain a smaller subset of crt ORFs, and thus fail to produce any carotenoids (group IV). The functions of many of these ORFs remain to be characterised.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Fotossíntese/genética , Sphingomonadaceae/genética , Sequência de Aminoácidos , Cantaxantina/metabolismo , Variação Genética , Família Multigênica/genética , Fases de Leitura Aberta/genética , Sphingomonadaceae/classificação , Xantofilas/metabolismo
4.
Environ Sci Pollut Res Int ; 24(18): 15360-15368, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28502053

RESUMO

Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO3. First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.


Assuntos
Micro-Ondas , Nanocompostos , Rodaminas/química , Catálise , Luz , Prata , Óxido de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...