Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Rev Clin Oncol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849530

RESUMO

Artificial intelligence (AI) stands at the threshold of revolutionizing clinical oncology, with considerable potential to improve early cancer detection and risk assessment, and to enable more accurate personalized treatment recommendations. However, a notable imbalance exists in the distribution of the benefits of AI, which disproportionately favour those living in specific geographical locations and in specific populations. In this Perspective, we discuss the need to foster the development of equitable AI tools that are both accurate in and accessible to a diverse range of patient populations, including those in low-income to middle-income countries. We also discuss some of the challenges and potential solutions in attaining equitable AI, including addressing the historically limited representation of diverse populations in existing clinical datasets and the use of inadequate clinical validation methods. Additionally, we focus on extant sources of inequity including the type of model approach (such as deep learning, and feature engineering-based methods), the implications of dataset curation strategies, the need for rigorous validation across a variety of populations and settings, and the risk of introducing contextual bias that comes with developing tools predominantly in high-income countries.

2.
Comput Biol Med ; 177: 108643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815485

RESUMO

Severe COVID-19 can lead to extensive lung disease causing lung architectural distortion. In this study we employed machine learning and statistical atlas-based approaches to explore possible changes in lung shape among COVID-19 patients and evaluated whether the extent of these changes was associated with COVID-19 severity. On a large multi-institutional dataset (N = 3443), three different populations were defined; a) healthy (no COVID-19), b) mild COVID-19 (no ventilator required), c) severe COVID-19 (ventilator required), and the presence of lung shape differences between them were explored using baseline chest CT. Significant lung shape differences were observed along mediastinal surfaces of the lungs across all severity of COVID-19 disease. Additionally, differences were seen on basal surfaces of the lung when compared between healthy and severe COVID-19 patients. Finally, an AI model (a 3D residual convolutional network) characterizing these shape differences coupled with lung infiltrates (ground-glass opacities and consolidation regions) was found to be associated with COVID-19 severity.


Assuntos
COVID-19 , Aprendizado Profundo , Pulmão , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Humanos , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Adulto
3.
Cureus ; 16(3): e56970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665735

RESUMO

Mixed epithelial and stromal tumor (MEST) is a benign, complex, and rarely encountered renal neoplasm. This case involves a 46-year-old perimenopausal woman who presented with symptoms, such as abdominal pain, burning sensation during urination, increased urinary frequency, and hesitancy. Computed tomography (CT) urography revealed an exophytic, heterogeneously hyperdense mass originating from the interpolar and lower pole parenchyma of the left kidney, suggesting a neoplastic origin. Due to concerns about malignancy and the presence of local symptoms, a laparoscopic-assisted left radical nephrectomy was performed. Histopathological examination of the excised tissue revealed a biphasic neoplasm consisting of epithelial and stromal elements. The epithelial component exhibited cysts and glands of variable sizes, lined by columnar cells and surrounded by stromal tissue. The diagnosis of MESTs of the kidney was established and confirmed through immunohistochemistry. This unique type of benign kidney tumor can be effectively managed through conservative surgery and is associated with a favorable prognosis.

4.
J Cancer Res Ther ; 20(1): 311-314, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554339

RESUMO

INTRODUCTION: The category of borderline malignancy or unknown malignant potential was added to the WHO's 2017 classification of thyroid tumours. A new histological variety of papillary tumours and Hurthle cell tumours was given as a separate entity. The classification has also adopted the Turin criteria for histological diagnosis of poorly differentiated cancer (PDC). SETTINGS AND DESIGN: Descriptive study. METHODS AND MATERIAL: From July 2018 to June 2022, 200 thyroid neoplasm patients at a tertiary care facility in western Maharashtra were participated in the prospective research over a period of 4 years. STATISTICAL ANALYSIS USED: The descriptive statistics were used to analyse the collected data. AIM: This study was undertaken to compare the old (2004) and new (2016) WHO classifications and their importance in the treatment of thyroid malignancies. RESULTS: Out of 200 cases, the age range of 31 to 40 years had the greatest number of cases. The ratio of females to males was 5:1. In our study, according to the WHO 2004 classification, malignant tumours comprised 57.5% of the cases, while benign tumours 42.5% of the cases. When tumours were subcategorized, the most frequent benign tumour was follicular adenoma (43.5%) and malignant tumour was papillary thyroid carcinoma (37%). Malignant tumours made up 47.5% of the cases when the tumours were reclassified using the revised WHO 2017 classification, followed by borderline tumours with 27.5% of the cases and benign tumours with 25% of the cases. The most frequent borderline tumour was NIFTP (Noninvasive follicular thyroid neoplasm with papillary-like nuclear features) (17.5%), the most prevalent malignant tumour was papillary carcinoma (including its variant) (32%), and the most frequent benign tumour was follicular adenoma (27%). CONCLUSION: We concluded that the inclusion of the Boderline Category in the new WHO classification significantly improved thyroid cancer management. WHO 2017 classification prevents under diagnosis (in the case of benign tumors) and over diagnosis (in the case of malignant tumors).


Assuntos
Adenocarcinoma Folicular , Adenoma , Lesões Pré-Cancerosas , Neoplasias da Glândula Tireoide , Adulto , Feminino , Humanos , Masculino , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/epidemiologia , Adenocarcinoma Folicular/patologia , Índia/epidemiologia , Compostos Orgânicos , Estudos Prospectivos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/patologia , Organização Mundial da Saúde
5.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348670

RESUMO

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Miocárdio/patologia , Transplante de Coração/efeitos adversos , Insuficiência Cardíaca/patologia , Coração , Aloenxertos , Rejeição de Enxerto/diagnóstico , Biópsia
6.
JAMA ; 331(6): 473-474, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38241034

RESUMO

In this narrative medicine essay, a pediatrician alters how she engages with and measures the developmental progress of her young son after he stops speaking.


Assuntos
Desenvolvimento Infantil , Idioma , Relações Mãe-Filho , Núcleo Familiar , Feminino , Humanos , Aprendizagem , Mães , Poder Familiar , Fala
7.
Comput Methods Programs Biomed ; 244: 107990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194767

RESUMO

BACKGROUND: Radiomics is a method within medical image analysis that involves the extraction of quantitative data from radiologic scans, often in conjunction with machine learning algorithms to phenotype disease appearance, prognosticate disease outcome, and predict treatment response. However, variance in CT scanner acquisition parameters, such as convolution kernels or pixel spacing, can impact radiomics texture feature values. PURPOSE: The extent to which the parameters influence radiomics features continues to be an active area of investigation. In this study, we describe a novel approach, Acquisition Impact on Radiomics Estimation (AcquIRE), to rank the impact of CT acquisition parameters on radiomic texture features. METHODS: In this work, we used three chest CT imaging datasets (n = 749 patients) from nine sites comprising: i) lung granulomas and adenocarcinomas (D1) (10 and 52 patients, respectively); ii) minimal and frank invasive adenocarcinoma (D2) (74 and 145 patients); and iii) early-stage NSCLC patients (D3) (315 patients). Datasets D2 and D3 were collected from four sites each, and D1 from a single site. For each patient, 744 texture features and nine acquisition parameters were extracted and utilized to evaluate which parameters impact radiomic features the most. The AcquIRE method establishes a relative assessment between acquisition parameters and radiomic texture featuresa through the creation of a classification model, which is then utilized to assess the rank of the acquisition parameters. RESULTS: Across the use cases, CT software version and convolution kernel parameters were found to have the most variance. In D1, it was observed that the Haralick texture feature family was the least affected by variations in acquisition parameters, while the Gabor feature family was the most impacted. However, in datasets D2 and D3, the Gabor features were found to be the least affected. Our findings suggest that the impact on radiomic parameters is as much a function of the problem in question as it is acquisition parameters. CONCLUSIONS: The software version and convolution kernel parameters impacted the radiomics feature the most.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Radiômica , Tomografia Computadorizada por Raios X/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Adenocarcinoma/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia
8.
Med Phys ; 51(4): 2549-2562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37742344

RESUMO

BACKGROUND: Accurate delineations of regions of interest (ROIs) on multi-parametric magnetic resonance imaging (mpMRI) are crucial for development of automated, machine learning-based prostate cancer (PCa) detection and segmentation models. However, manual ROI delineations are labor-intensive and susceptible to inter-reader variability. Histopathology images from radical prostatectomy (RP) represent the "gold standard" in terms of the delineation of disease extents, for example, PCa, prostatitis, and benign prostatic hyperplasia (BPH). Co-registering digitized histopathology images onto pre-operative mpMRI enables automated mapping of the ground truth disease extents onto mpMRI, thus enabling the development of machine learning tools for PCa detection and risk stratification. Still, MRI-histopathology co-registration is challenging due to various artifacts and large deformation between in vivo MRI and ex vivo whole-mount histopathology images (WMHs). Furthermore, the artifacts on WMHs, such as tissue loss, may introduce unrealistic deformation during co-registration. PURPOSE: This study presents a new registration pipeline, MSERgSDM, a multi-scale feature-based registration (MSERg) with a statistical deformation (SDM) constraint, which aims to improve accuracy of MRI-histopathology co-registration. METHODS: In this study, we collected 85 pairs of MRI and WMHs from 48 patients across three cohorts. Cohort 1 (D1), comprised of a unique set of 3D printed mold data from six patients, facilitated the generation of ground truth deformations between ex vivo WMHs and in vivo MRI. The other two clinically acquired cohorts (D2 and D3) included 42 patients. Affine and nonrigid registrations were employed to minimize the deformation between ex vivo WMH and ex vivo T2-weighted MRI (T2WI) in D1. Subsequently, ground truth deformation between in vivo T2WI and ex vivo WMH was approximated as the deformation between in vivo T2WI and ex vivo T2WI. In D2 and D3, the prostate anatomical annotations, for example, tumor and urethra, were made by a pathologist and a radiologist in collaboration. These annotations included ROI boundary contours and landmark points. Before applying the registration, manual corrections were made for flipping and rotation of WMHs. MSERgSDM comprises two main components: (1) multi-scale representation construction, and (2) SDM construction. For the SDM construction, we collected N = 200 reasonable deformation fields generated using MSERg, verified through visual inspection. Three additional methods, including intensity-based registration, ProsRegNet, and MSERg, were also employed for comparison against MSERgSDM. RESULTS: Our results suggest that MSERgSDM performed comparably to the ground truth (p > 0.05). Additionally, MSERgSDM (ROI Dice ratio = 0.61, landmark distance = 3.26 mm) exhibited significant improvement over MSERg (ROI Dice ratio = 0.59, landmark distance = 3.69 mm) and ProsRegNet (ROI Dice ratio = 0.56, landmark distance = 4.00 mm) in local alignment. CONCLUSIONS: This study presents a novel registration method, MSERgSDM, for mapping ex vivo WMH onto in vivo prostate MRI. Our preliminary results demonstrate that MSERgSDM can serve as a valuable tool to map ground truth disease annotations from histopathology images onto MRI, thereby assisting in the development of machine learning models for PCa detection on MRI.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/cirurgia , Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Prostatectomia , Pelve
9.
J Pathol Clin Res ; 10(1): e344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822044

RESUMO

Liver is one of the most common sites for metastases, which can occur on account of primary tumors from multiple sites of origin. Identifying the primary site of origin (PSO) of a metastasis can help in guiding therapeutic options for liver metastases. In this pilot study, we hypothesized that computer extracted handcrafted (HC) histomorphometric features can be utilized to identify the PSO of liver metastases. Cellular features, including tumor nuclei morphological and graph features as well as cytoplasm texture features, were extracted by computer algorithms from 175 slides (114 patients). The study comprised three experiments: (1) comparing and (2) fusing a machine learning (ML) model trained with HC pathomic features and deep learning (DL)-based classifiers to predict site of origin; (3) identifying the section of the primary tumor from which metastases were derived. For experiment 1, we divided the cohort into training sets composed of primary and matched liver metastases [60 patients, 121 whole slide images (WSIs)], and a hold-out validation set (54 patients, 54 WSIs) composed solely of liver metastases of known site of origin. Using the extracted HC features of the training set, a combination of supervised machine classifiers and unsupervised clustering was applied to identify the PSO. A random forest classifier achieved areas under the curve (AUCs) of 0.83, 0.64, 0.82, and 0.64 in classifying the metastatic tumor from colon, esophagus, breast, and pancreas on the validation set. The top features related to nuclear and peri-nuclear shape and textural attributes. We also trained a DL network to serve as a direct comparison to our method. The DL model achieved AUCs for colon: 0.94, esophagus: 0.66, breast: 0.79, and pancreas: 0.67 in identifying PSO. A decision fusion-based strategy was deployed to fuse the trained ML and DL classifiers and achieved slightly better results than ML or DL classifier alone (colon: 0.93, esophagus: 0.68, breast: 0.81, and pancreas: 0.69). For the third experiment, WSI-level attention maps were also generated using a trained DL network to generate a composite feature similarity heat map between paired primaries and their associated metastases. Our experiments revealed that epithelium-rich and moderately differentiated tumor regions of primary tumors were quantitatively similar to paired metastatic tumors. Our findings suggest that a combination of HC and DL features could potentially help identify the PSO for liver metastases while at the same time also potentially identify the spatial sites of origin for the metastases within primary tumors.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Projetos Piloto , Algoritmos , Aprendizado de Máquina
10.
Acad Radiol ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37993303

RESUMO

RATIONALE AND OBJECTIVES: To evaluate the standalone performance of a deep learning (DL) based fracture detection tool on extremity radiographs and assess the performance of radiologists and emergency physicians in identifying fractures of the extremities with and without the DL aid. MATERIALS AND METHODS: The DL tool was previously developed using 132,000 appendicular skeletal radiographs divided into 87% training, 11% validation, and 2% test sets. Stand-alone performance was evaluated on 2626 de-identified radiographs from a single institution in Ohio, including at least 140 exams per body region. Consensus from three US board-certified musculoskeletal (MSK) radiologists served as ground truth. A multi-reader retrospective study was performed in which 24 readers (eight each of emergency physicians, non-MSK radiologists, and MSK radiologists) identified fractures in 186 cases during two independent sessions with and without DL aid, separated by a one-month washout period. The accuracy (area under the receiver operating curve), sensitivity, specificity, and reading time were compared with and without model aid. RESULTS: The model achieved a stand-alone accuracy of 0.986, sensitivity of 0.987, and specificity of 0.885, and high accuracy (> 0.95) across stratification for body part, age, gender, radiographic views, and scanner type. With DL aid, reader accuracy increased by 0.047 (95% CI: 0.034, 0.061; p = 0.004) and sensitivity significantly improved from 0.865 (95% CI: 0.848, 0.881) to 0.955 (95% CI: 0.944, 0.964). Average reading time was shortened by 7.1 s (27%) per exam. When stratified by physician type, this improvement was greater for emergency physicians and non-MSK radiologists. CONCLUSION: The DL tool demonstrated high stand-alone accuracy, aided physician diagnostic accuracy, and decreased interpretation time.

11.
Lab Invest ; 103(12): 100265, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858679

RESUMO

Prostate cancer prognostication largely relies on visual assessment of a few thinly sectioned biopsy specimens under a microscope to assign a Gleason grade group (GG). Unfortunately, the assigned GG is not always associated with a patient's outcome in part because of the limited sampling of spatially heterogeneous tumors achieved by 2-dimensional histopathology. In this study, open-top light-sheet microscopy was used to obtain 3-dimensional pathology data sets that were assessed by 4 human readers. Intrabiopsy variability was assessed by asking readers to perform Gleason grading of 5 different levels per biopsy for a total of 20 core needle biopsies (ie, 100 total images). Intrabiopsy variability (Cohen κ) was calculated as the worst pairwise agreement in GG between individual levels within each biopsy and found to be 0.34, 0.34, 0.38, and 0.43 for the 4 pathologists. These preliminary results reveal that even within a 1-mm-diameter needle core, GG based on 2-dimensional images can vary dramatically depending on the location within a biopsy being analyzed. We believe that morphologic assessment of whole biopsies in 3 dimension has the potential to enable more reliable and consistent tumor grading.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Biópsia , Neoplasias da Próstata/patologia , Biópsia com Agulha de Grande Calibre , Gradação de Tumores
12.
Front Oncol ; 13: 1166047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731630

RESUMO

Objective: The aim of this study was to quantify radiomic changes in prostate cancer (PCa) progression on serial MRI among patients on active surveillance (AS) and evaluate their association with pathologic progression on biopsy. Methods: This retrospective study comprised N = 121 biopsy-proven PCa patients on AS at a single institution, of whom N = 50 at baseline conformed to the inclusion criteria. ISUP Gleason Grade Groups (GGG) were obtained from 12-core TRUS-guided systematic biopsies at baseline and follow-up. A biopsy upgrade (AS+) was defined as an increase in GGG (or in number of positive cores) and no upgrade (AS-) was defined when GGG remained the same during a median period of 18 months. Of N = 50 patients at baseline, N = 30 had MRI scans available at follow-up (median interval = 18 months) and were included for delta radiomic analysis. A total of 252 radiomic features were extracted from the PCa region of interest identified by board-certified radiologists on 3T bi-parametric MRI [T2-weighted (T2W) and apparent diffusion coefficient (ADC)]. Delta radiomic features were computed as the difference of radiomic feature between baseline and follow-up scans. The association of AS+ with age, prostate-specific antigen (PSA), Prostate Imaging Reporting and Data System (PIRADS v2.1) score, and tumor size was evaluated at baseline and follow-up. Various prediction models were built using random forest (RF) classifier within a threefold cross-validation framework leveraging baseline radiomics (Cbr), baseline radiomics + baseline clinical (Cbrbcl), delta radiomics (CΔr), delta radiomics + baseline clinical (CΔrbcl), and delta radiomics + delta clinical (CΔrΔcl). Results: An AUC of 0.64 ± 0.09 was obtained for Cbr, which increased to 0.70 ± 0.18 with the integration of clinical variables (Cbrbcl). CΔr yielded an AUC of 0.74 ± 0.15. Integrating delta radiomics with baseline clinical variables yielded an AUC of 0.77 ± 0.23. CΔrΔclresulted in the best AUC of 0.84 ± 0.20 (p < 0.05) among all combinations. Conclusion: Our preliminary findings suggest that delta radiomics were more strongly associated with upgrade events compared to PIRADS and other clinical variables. Delta radiomics on serial MRI in combination with changes in clinical variables (PSA and tumor volume) between baseline and follow-up showed the strongest association with biopsy upgrade in PCa patients on AS. Further independent multi-site validation of these preliminary findings is warranted.

13.
NPJ Breast Cancer ; 9(1): 67, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567880

RESUMO

The combination of Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) is the standard of care for hormone receptor-positive (HR + ), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Currently, there are no robust biomarkers that can predict response to CDK4/6i, and it is not clear which patients benefit from this therapy. Since MBC patients with liver metastases have a poorer prognosis, developing predictive biomarkers that could identify patients likely to respond to CDK4/6i is clinically important. Here we show the ability of imaging texture biomarkers before and a few cycles after CDK4/6i therapy, to predict early response and overall survival (OS) on 73 MBC patients with known liver metastases who received palbociclib plus ET from two sites. The delta radiomic model was associated with OS in validation set (HR: 2.4; 95% CI, 1.06-5.6; P = 0.035; C-index = 0.77). Compared to RECIST response, delta radiomic features predicted response with area under the curve (AUC) = 0.72, 95% confidence interval (CI) 0.67-0.88. Our study revealed that radiomics features can predict a lack of response earlier than standard anatomic/RECIST 1.1 assessment and warrants further study and clinical validation.

14.
Gynecol Minim Invasive Ther ; 12(2): 77-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416097

RESUMO

Objectives: Early diagnosis and treatment of preinvasive lesions have made cervical cytology one of the most effective methods of cancer screening in industrialized nations, which have seen a sharp decline in the incidence and death of invasive cancer. The aim of this study is to compare liquid-based cytology (LBC) and conventional Pap on cervical smears. Materials and Methods: From July 2018 to June 2022, 600 patients were included in this cross-sectional study, which was done at the Pathology Department of a Tertiary Care Facility in Western Maharashtra. Results: Of the 600 patients, 570 (95%) had good conventional Pap smear (CPS), whereas 30 (5%) had poor ones. Five hundred and ninety-two (98.6%) LBC smears were satisfactory, whereas 8 (1.4%) were unsatisfactory. Endocervical cells were seen in 294 (49%) CPS, whereas 360 (60%) LBC smears showed endocervical cells. The morphology of inflammatory cells was similar in both techniques. Hemorrhagic background was seen in 212 (35%) CPS and 76 (12.6%) LBC smears. Only two samples showed diathetic background, which was seen on both CPS and smear. Out of the satisfactory smears in the case of CPS, 512 (85%) cases were reported as negative for intraepithelial lesion or malignancy (NILM), whereas 58 (9.7%) cases were reported as epithelial cell abnormality. In LBC smears, 526 (87.3%) were reported as NILM, whereas 66 (11%) were reported as epithelial cell abnormality. Organisms were detected in 208 (34%) CPS and 162 (27%) LBC smears. Screening time was 5 ± 1 min for CPS, whereas it was 3 ± 1 min for LBC smear. Conclusion: Mortality will be decreased using LBC on a bigger scale in nations where many smears can be made and screened in a short amount of time, with the provision of doing human papillomavirus-based testing on the remaining sample.

15.
Clin Breast Cancer ; 23(8): 800-812, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37380569

RESUMO

Breast cancer is one of the most common and deadly cancers worldwide. Approximately, 20% of all breast cancers are characterized as triple negative (TNBC). TNBC typically is associated with a poorer prognosis relative to other breast cancer subtypes. Due to its aggressiveness and lack of response to hormonal therapy, conventional cytotoxic chemotherapy is the usual treatment; however, this treatment is not always effective, and an important percentage of patients develop recurrence. More recently, immunotherapy has started to be used on some populations with TNBC showing promising results. Unfortunately, immunotherapy is only applicable to a minority of patients and responses in metastatic TNBC have overall been modest in comparison to other cancer types. This situation evidences the need for developing effective biomarkers that help to stratify and personalize patient management. Thanks to recent advances in artificial intelligence (AI), there has been an increasing interest in its use for medical applications aiming at supporting clinical decision making. Several works have used AI in combination with diagnostic medical imaging, more specifically radiology and digitized histopathological tissue samples, aiming to extract disease-specific information that is difficult to quantify by the human eye. These works have demonstrated that analysis of such images in the context of TNBC has great potential for (1) risk-stratifying patients to identify those patients who are more likely to experience disease recurrence or die from the disease and (2) predicting pathologic complete response. In this manuscript, we present an overview on AI and its integration with radiology and histopathological images for developing prognostic and predictive approaches for TNBC. We present state of the art approaches in the literature and discuss the opportunities and challenges with developing AI algorithms regarding further development and clinical deployment, including identifying those patients who may benefit from certain treatments (e.g., adjuvant chemotherapy) from those who may not and thereby should be directed toward other therapies, discovering potential differences between populations, and identifying disease subtypes.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Inteligência Artificial , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Quimioterapia Adjuvante
16.
Oral Oncol ; 143: 106459, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37307602

RESUMO

OBJECTIVES: Matching treatment intensity to tumor biology is critical to precision oncology for head and neck squamous cell carcinoma (HNSCC) patients. We sought to identify biological features of tumor cell multinucleation, previously shown by us to correlate with survival in oropharyngeal (OP) SCC using a machine learning approach. MATERIALS AND METHODS: Hematoxylin and eosin images from an institutional OPSCC cohort formed the training set (DTr). TCGA HNSCC patients (oral cavity, oropharynx and larynx/hypopharynx) formed the validation set (DV). Deep learning models were trained in DTr to calculate a multinucleation index (MuNI) score. Gene set enrichment analysis (GSEA) was then used to explore correlations between MuNI and tumor biology. RESULTS: MuNI correlated with overall survival. A multivariable nomogram that included MuNI, age, race, sex, T/N stage, and smoking status yielded a C-index of 0.65, and MuNI was prognostic of overall survival (2.25, 1.07-4.71, 0.03), independent of the other variables. High MuNI scores correlated with depletion of effector immunocyte subsets across all HNSCC sites independent of HPV and TP53 mutational status although the correlations were strongest in wild-type TP53 tumors potentially due to aberrant mitotic events and activation of DNA-repair mechanisms. CONCLUSION: MuNI is associated with survival in HNSCC across subsites. This may be driven by an association between high levels of multinucleation and a suppressive (potentially exhausted) tumor immune microenvironment. Mechanistic studies examining the link between multinucleation and tumor immunity will be required to characterize biological drivers of multinucleation and their impact on treatment response and outcomes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Medicina de Precisão , Prognóstico , Microambiente Tumoral
17.
NPJ Precis Oncol ; 7(1): 53, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268691

RESUMO

Chemoradiation is a common therapeutic regimen for human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC). However, not all patients benefit from chemotherapy, especially patients with low-risk characteristics. We aim to develop and validate a prognostic and predictive radiomic image signature (pRiS) to inform survival and chemotherapy benefit using computed tomography (CT) scans from 491 stage I and II HPV-associated OPSCC, which were divided into three cohorts D1-D3. The prognostic performance of pRiS was evaluated on two test sets (D2, n = 162; D3, n = 269) using concordance index. Patients from D2 and D3 who received either radiotherapy alone or chemoradiation were used to validate pRiS as predictive of added benefit of chemotherapy. Seven features were selected to construct pRiS, which was found to be prognostic of overall survival (OS) on univariate analysis in D2 (hazard ratio [HR] = 2.14, 95% confidence interval [CI], 1.1-4.16, p = 0.02) and D3 (HR = 2.74, 95% CI, 1.34-5.62, p = 0.006). Chemotherapy was associated with improved OS for high-pRiS patients in D2 (radiation vs chemoradiation, HR = 4.47, 95% CI, 1.73-11.6, p = 0.002) and D3 (radiation vs chemoradiation, HR = 2.99, 95% CI, 1.04-8.63, p = 0.04). In contrast, chemotherapy did not improve OS for low-pRiS patients, which indicates these patients did not derive additional benefit from chemotherapy and could be considered for treatment de-escalation. The proposed radiomic signature was prognostic of patient survival and informed benefit from chemotherapy for stage I and II HPV-associated OPSCC patients.

18.
NPJ Precis Oncol ; 7(1): 52, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264091

RESUMO

The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes. PhenoTIL's advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the clinical trial Checkmate 057 (NCT01673867).

19.
Curr Probl Diagn Radiol ; 52(1): 1-5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36115775

RESUMO

Given limited exposure to radiology during the pre-clinical and clinical years, it has been challenging to recruit medical students to radiology. Now, many medical students considering radiology as a career are deterred due to misinformation surrounding how AI implementation will affect radiologists in the future. Artificial Intelligence (AI) has the potential to revolutionize the way in which medicine is practiced, especially in the field of radiology, and will ultimately support radiologists and advance the specialty. We aimed to provide a basic guide for medical students on the application of artificial intelligence in radiology, address misconceptions, highlight the role radiologists will play in AI development, and discuss the challenges faced in the future.


Assuntos
Radiologia , Estudantes de Medicina , Humanos , Inteligência Artificial , Radiologistas , Radiologia/educação , Previsões
20.
Res Sq ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234757

RESUMO

Endometrial cancer (EC) disproportionately affects African American (AA) women in terms of progression and death. In our study, we sought to employ computerized image and bioinformatic analysis to tease out morphologic and molecular differences in EC between AA and European-American (EA) populations. We identified the differences in immune cell spatial patterns between AA and EA populations with markers of tumor biology, including histologic and molecular subtypes. The models performed best when they were trained and validated using data from the same population. Unsupervised clustering revealed a distinct association between immune cell features and known molecular subtypes of endometrial cancer that varied between AA and EA populations. Our genomic analysis revealed two distinct and novel gene sets with mutations associated with improved prognosis in AA and EA patients. Our study findings suggest the need for population-specific risk prediction models for women with endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...