Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38698753

RESUMO

Natural plant sources are essential in the development of several anticancer drugs, such as vincristine, vinblastine, vinorelbine, docetaxel, paclitaxel, camptothecin, etoposide, and teniposide. However, various chemotherapies fail due to adverse reactions, drug resistance, and target specificity. Researchers are now focusing on developing drugs that use natural compounds to overcome these issues. These drugs can affect multiple targets, have reduced adverse effects, and are effective against several cancer types. Developing a new drug is a highly complex, expensive, and time-consuming process. Traditional drug discovery methods take up to 15 years for a new medicine to enter the market and cost more than one billion USD. However, recent Computer Aided Drug Discovery (CADD) advancements have changed this situation. This paper aims to comprehensively describe the different CADD approaches in identifying anticancer drugs from natural products. Data from various sources, including Science Direct, Elsevier, NCBI, and Web of Science, are used in this review. In-silico techniques and optimization algorithms can provide versatile solutions in drug discovery ventures. The structure-based drug design technique is widely used to understand chemical constituents' molecular-level interactions and identify hit leads. This review will discuss the concept of CADD, in-silico tools, virtual screening in drug discovery, and the concept of natural products as anticancer therapies. Representative examples of molecules identified will also be provided.

2.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445708

RESUMO

Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy.


Assuntos
Concussão Encefálica/fisiopatologia , Resistência à Insulina/fisiologia , Animais , Encéfalo/metabolismo , Concussão Encefálica/diagnóstico por imagem , Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Proteínas Priônicas/metabolismo , Príons/metabolismo , Transdução de Sinais/fisiologia
3.
BMC Cancer ; 21(1): 270, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711962

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is a target for cancer therapy as it is overexpressed in a wide variety of cancers. Therapeutic antibodies that bind EGFR are being evaluated in clinical trials as imaging agents for positron emission tomography and image-guided surgery. However, some of these antibodies have safety concerns such as infusion reactions, limiting their use in imaging applications. Nimotuzumab is a therapeutic monoclonal antibody that is specific for EGFR and has been used as a therapy in a number of countries. METHODS: Formulation of IRDye800CW-nimotuzumab for a clinical trial application was prepared. The physical, chemical, and pharmaceutical properties were tested to develop the specifications to determine stability of the product. The acute and delayed toxicities were tested and IRDye800CW-nimotuzumab was determined to be non-toxic. Non-compartmental pharmacokinetics analysis was used to determine the half-life of IRDye800CW-nimotuzumab. RESULTS: IRDye800CW-nimotuzumab was determined to be non-toxic from the acute and delayed toxicity study. The half-life of IRDye800CW-nimotuzumab was determined to be 38 ± 1.5 h. A bi-exponential analysis was also used which gave a t1/2 alpha of 1.5 h and t1/2 beta of 40.8 h. CONCLUSIONS: Here, we show preclinical studies demonstrating that nimotuzumab conjugated to IRDye800CW is safe and does not exhibit toxicities commonly associated with EGFR targeting antibodies.


Assuntos
Drogas em Investigação/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/toxicidade , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/farmacocinética , Benzenossulfonatos/toxicidade , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Estabilidade de Medicamentos , Drogas em Investigação/farmacologia , Drogas em Investigação/toxicidade , Receptores ErbB/antagonistas & inibidores , Feminino , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/toxicidade , Indóis/administração & dosagem , Indóis/farmacocinética , Indóis/toxicidade , Aplicação de Novas Drogas em Teste , Masculino , Camundongos , Neoplasias/patologia , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Enzyme Inhib Med Chem ; 34(1): 620-630, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727782

RESUMO

In an attempt to improve anti-breast cancer activity, a new series of 4-piperazinylquinoline derivatives based on the urea/thiourea scaffold were designed and synthesised by a pharmacophore hybrid approach. We then examined for their antiproliferative effects on three human breast tumor cell lines, MDA-MB231, MDA-MB468 and MCF7, and two non-cancer breast epithelial cell lines, 184B5 and MCF10A. Among those 26 novel compounds examined, 5, 9, 17, 18, 21, 23 and 29 showed significantly improved antiproliferative activity on breast cancer cells. Compound 23 (4-(7-chloro-quinolin-4-yl)-piperazine-1-carbothioic acid (2-morpholin-4-yl-ethyl)-amide) (RL-15) is especially desirable, since its antigrowth/cell-killing activity is 7-11 fold higher on cancer than non-cancer cells. Data from cell biological studies demonstrated that cancer cells compromised plasma membrane integrity in the presence of compound 23. The cancer cell-specific property of compound 23 shown in cell culture stands in vivo test, this compound can be an excellent lead for effective and safe anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Piperazinas/farmacologia , Quinolinas/farmacologia , Tioureia/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Tioureia/química , Células Tumorais Cultivadas , Ureia/química
5.
BMC Biotechnol ; 18(1): 55, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200951

RESUMO

BACKGROUND: Advances in antibody engineering provide strategies to construct recombinant antibody-like molecules with modified pharmacokinetic properties. Multermerization is one strategy that has been used to produce antibody-like molecules with two or more antigen binding sites. Multimerization enhances the functional affinity (avidity) and can be used to optimize size and pharmacokinetic properties. Most multimerization strategies involve genetically fusing or non-covalently linking antibody fragments using oligomerization domains. Recent studies have defined guidelines for producing antibody-like molecules with optimal tumor targeting properties, which require intermediates size (70-120 kDa) and bi- or tri-valency. RESULTS: We described a highly modular antibody-engineering platform for rapidly constructing synthetic, trivalent single chain variable fragments (Tri-scFv) using the SpyCatcher/SpyTag protein ligase system. We used this platform to construct an anti-human epidermal growth factor receptor 3 (HER3) Tri-scFv. We generated the anti-HER3 Tri-scFv by genetically fusing a SpyCatcher to the C-terminus of an anti-HER3 scFv and ligating it to a synthetic Tri-SpyTag peptide. The anti-HER3 Tri-scFv bound recombinant HER3 with an apparent KD of 2.67 nM, which is approximately 12 times lower than the KD of monomeric anti-HER3 scFv (31.2 nM). Anti-HER3 Tri-scFv also bound endogenous cell surface expressed HER3 stronger than the monomer anti-HER3 scFv. CONCLUSION: We used the SpyTag/SpyCatcher protein ligase system to ligate anti-HER3 scFv fused to a SpyCatcher at its C-termini to a Tri-SpyTag to construct Tr-scFv. This system allowed the construction of a Tri-scFv with all the scFv antigen-binding sites pointed outwards. The anti-HER3 Tri-scFv bound recombinant and endogenously expressed HER3 with higher functional affinity (avidity) than the monomeric anti-HER3 scFv. The Tri-scFv had the size, valency, and functional affinity that are desired for therapeutic and imaging applications. Use of the SpyTag/SpyCatcher protein ligase system allows Tri-scFvs to be rapidly constructed in a simple, modular manner, which can be easily applied to scFvs or other antibody fragments targeting other antigens.


Assuntos
Ligases/química , Peptídeos/genética , Engenharia de Proteínas/métodos , Receptor ErbB-3/imunologia , Anticorpos de Cadeia Única/genética , Afinidade de Anticorpos , Humanos , Peptídeos/imunologia , Engenharia de Proteínas/instrumentação , Receptor ErbB-3/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...