Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(44): 40456-40465, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385882

RESUMO

Molten hydroxide scrubbing of off-gas vapors is a potential process to improve safety during the operation of generation IV molten salt nuclear reactors (MSRs). MSRs produce off-gases that can be vented by the reactor core and treated via off-gas scrubbers. Molten hydroxide scrubbers focus on capturing volatile iodine radionuclides, and they can also be used to capture aerosols and particulates and to neutralize acidic species. The performance of these scrubbers depends on the chemical interactions of the scrubbing medium with the off-gas species. Knowledge of the concentration and speciation of scrubbed or target species, as well as process and environmental interferents, can enable advanced operation of MSR off-gas treatment systems. Optical online monitoring is an excellent technology to provide this information in real time, while limiting the need for operators to interact with radioactive samples through hands-on interrogation. Raman spectroscopy can provide crucial chemical information on the state of the molten eutectic during treatment in the molten phase, as well as the gas phase. In this work, Raman spectroscopy is used to detect iodine species, specifically iodate, in the molten phase of a NaOH-KOH eutectic and to construct a calibration curve of the Raman signal of those species. Additionally, a carbonate interferent is followed from the gas phase to the liquid phase as a basis for reaching a Raman-aided mass balance of the molten hydroxide eutectic scrubber system.

2.
J Am Chem Soc ; 144(32): 14809-14818, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35926171

RESUMO

Electrocatalysis is a promising approach to convert waste nitrate to ammonia and help close the nitrogen cycle. This renewably powered ammonia production process sources hydrogen from water (as opposed to methane in the thermal Haber-Bosch process) but requires a delicate balance between a catalyst's activity for the hydrogen evolution reaction (HER) and the nitrate reduction reaction (NO3RR), influencing the Faradaic efficiency (FE) and selectivity to ammonia/ammonium over other nitrogen-containing products. We measure ammonium FEs ranging from 3.6 ± 6.6% (on Ag) to 93.7 ± 0.9% (on Co) across a range of transition metals (TMs; Ti, Fe, Co, Ni, Ni0.68Cu0.32, Cu, and Ag) in buffered neutral media. To better understand these competing reaction kinetics, we develop a microkinetic model that captures the voltage-dependent nitrate rate order and illustrates its origin as competitive adsorption between nitrate and hydrogen adatoms (H*). NO3RR FE can be described via competition for electrons with the HER, decreasing sharply for TMs with a high work function and a correspondingly high HER activity (e.g., Ni). Ammonium selectivity nominally increases as the TM d-band center energy (Ed) approaches and overcomes the Fermi level (EF), but is exceptionally high for Co compared to materials with similar Ed. Density functional theory (DFT) calculations indicate Co maximizes ammonium selectivity via (1) strong nitrite binding enabling subsequent reduction and (2) promotion of nitric oxide dissociation, leading to selective reduction of the nitrogen adatom (N*) to ammonium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...