Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895438

RESUMO

Huntington's disease (HD), one of >50 inherited repeat expansion disorders (Depienne and Mandel, 2021), is a dominantly-inherited neurodegenerative disease caused by a CAG expansion in HTT (The Huntington's Disease Collaborative Research Group, 1993). Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the property driving disease is the CAG length-dependent propensity of the repeat to further expand in brain (Swami et al ., 2009; GeM-HD, 2015; Hensman Moss et al ., 2017; Ciosi et al ., 2019; GeM-HD, 2019; Hong et al ., 2021). Routes to slowing somatic CAG expansion therefore hold great promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair (MMR) pathway, modify somatic expansion in HD mouse models (Wheeler and Dion, 2021). To identify novel modifiers of somatic expansion, we have used CRISPR-Cas9 editing in HD knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This has included testing of HD onset modifier genes emerging from human genome-wide association studies (GWAS), as well as interactions between modifier genes, thereby providing new insight into pathways underlying CAG expansion and potential therapeutic targets.

2.
Nucleic Acids Res ; 49(7): 3907-3918, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751106

RESUMO

Somatic expansion of the CAG repeat tract that causes Huntington's disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.


Assuntos
Reparo do DNA , Endonucleases , Doença de Huntington/genética , Proteínas MutL , Processamento de Proteína , Expansão das Repetições de Trinucleotídeos , Animais , Células Cultivadas , Endonucleases/fisiologia , Feminino , Fibroblastos , Técnicas de Introdução de Genes , Instabilidade Genômica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas MutL/fisiologia , Oligonucleotídeos
3.
J Huntingtons Dis ; 10(1): 149-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579860

RESUMO

Huntington's disease (HD) is one of a large group of human disorders that are caused by expanded DNA repeats. These repeat expansion disorders can have repeat units of different size and sequence that can be located in any part of the gene and, while the pathological consequences of the expansion can differ widely, there is evidence to suggest that the underlying mutational mechanism may be similar. In the case of HD, the expanded repeat unit is a CAG trinucleotide located in exon 1 of the huntingtin (HTT) gene, resulting in an expanded polyglutamine tract in the huntingtin protein. Expansion results in neuronal cell death, particularly in the striatum. Emerging evidence suggests that somatic CAG expansion, specifically expansion occurring in the brain during the lifetime of an individual, contributes to an earlier disease onset and increased severity. In this review we will discuss mouse models of two non-CAG repeat expansion diseases, specifically the Fragile X-related disorders (FXDs) and Friedreich ataxia (FRDA). We will compare and contrast these models with mouse and patient-derived cell models of various other repeat expansion disorders and the relevance of these findings for somatic expansion in HD. We will also describe additional genetic factors and pathways that modify somatic expansion in the FXD mouse model for which no comparable data yet exists in HD mice or humans. These additional factors expand the potential druggable space for diseases like HD where somatic expansion is a significant contributor to disease impact.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Síndrome do Cromossomo X Frágil/genética , Ataxia de Friedreich/genética , Genes Modificadores/genética , Instabilidade Genômica/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Humanos , Camundongos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31165281

RESUMO

Additive neurogenesis, the net increase in neuronal numbers by addition of new nerve cells to existing tissue, forms the basis for indeterminate spinal cord growth in brown ghost knifefish (Apteronotus leptorhynchus). Among the cells generated through the activity of adult neural stem cells are electromotoneurons, whose axons constitute the electric organ of this weakly electric fish. Electromotoneuron development is organized along a caudo-rostral gradient, with the youngest and smallest of these cells located near the caudal end of the spinal cord. Electromotoneurons start expressing calbindin-D28k when their somata have reached diameters of approximately 10 µm, and they continue expression after they have grown to a final size of about 50 µm. Calbindin-D28k expression is significantly increased in young neurons generated in response to injury. Immunohistochemical staining against caspase-3 revealed that electromotoneurons in both intact and regenerating spinal cord are significantly less likely to undergo apoptosis than the average spinal cord cell. We hypothesize that expression of calbindin-D28k protects electromotoneurons from cell death; and that the evolutionary development of such a neuroprotective mechanism has been driven by the indispensability of electromotoneurons in the fish's electric behavior, and by the high size-dependent costs associated with their production or removal upon cell death.


Assuntos
Calbindina 1/metabolismo , Gimnotiformes/fisiologia , Neurônios Motores/metabolismo , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Medula Espinal/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Órgão Elétrico/citologia , Órgão Elétrico/metabolismo , Células-Tronco Neurais/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-27225982

RESUMO

Among the cellular processes that follow injury to the central nervous system, glial scar formation is thought to be one of the major factors that prevent regeneration. In regeneration-competent organisms, glial scar formation has been a matter of controversy. We addressed this issue by examining the glial population after spinal cord injury in a model of regeneration competency, the knifefish Apteronotus leptorhynchus. Analysis of spinal cord sections immunostained against the glial markers glial fibrillary acidic protein, vimentin, or chondroitin sulfate proteoglycan failed to produce any evidence for the formation of a glial scar in the area of the lesion at post-injury survival times ranging from 5 to 185 days. This result was independent of the lesion paradigm applied-amputation of the caudal part of the spinal cord or hemisection lesioning-and similar after examination of transverse and longitudinal sections. We hypothesize that the well-developed network of radial glia in both the intact and the injured spinal cord provides a support system for regeneration of tissue lost to injury. This glial network is likely also involved in the generation of new cells, as indicated by the large subset of glial fibrillary acidic protein-labeled glia that express the stem cell marker Sox2.


Assuntos
Gimnotiformes/fisiologia , Neuroglia/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Animais , Modelos Animais de Doenças , Proteínas de Peixes/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose , Imuno-Histoquímica , Microscopia Confocal , Microscopia de Fluorescência , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Neuroglia/patologia , Fatores de Transcrição SOXB1/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia
6.
Dev Neurobiol ; 75(1): 39-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044932

RESUMO

Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit-amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l-methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse-chase analysis of the label size associated with new cells after administration of 5-bromo-2'-deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain.


Assuntos
Células-Tronco Adultas/fisiologia , Cerebelo/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Células-Tronco Adultas/citologia , Animais , Cerebelo/citologia , Peixes , Células-Tronco Neurais/citologia
7.
Proc Natl Acad Sci U S A ; 110(9): 3513-8, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401545

RESUMO

Alternate erythropoietin (EPO)-mediated signaling via the heteromeric receptor composed of the EPO receptor and the ß-common receptor (CD131) exerts the tissue-protective actions of EPO in various types of injuries. Herein we investigated the effects of the EPO derivative helix beta surface peptide (synonym: ARA290), which specifically triggers alternate EPO-mediated signaling, but does not bind the erythropoietic EPO receptor homodimer, on the progression of secondary tissue damage following cutaneous burns. For this purpose, a deep partial thickness cutaneous burn injury was applied on the back of mice, followed by systemic administration of vehicle or ARA290 at 1, 12, and 24 h postburn. With vehicle-only treatment, wounds exhibited secondary microvascular thrombosis within 24 h postburn, and subsequent necrosis of the surrounding tissue, thus converting to a full-thickness injury within 48 h. On the other hand, when ARA290 was systemically administered, patency of the microvasculature was maintained. Furthermore, ARA290 mitigated the innate inflammatory response, most notably tumor necrosis factor-alpha-mediated signaling. These findings correlated with long-term recovery of initially injured yet viable tissue components. In conclusion, ARA290 may be a promising therapeutic approach to prevent the conversion of partial- to full-thickness burn injuries. In a clinical setting, the decrease in burn depth and area would likely reduce the necessity for extensive surgical debridement as well as secondary wound closure by means of skin grafting. This use of ARA290 is consistent with its tissue-protective properties previously reported in other models of injury, such as myocardial infarction and hemorrhagic shock.


Assuntos
Queimaduras/prevenção & controle , Eritropoetina/farmacologia , Inflamação/prevenção & controle , Microvasos/patologia , Transdução de Sinais/efeitos dos fármacos , Pele/irrigação sanguínea , Trombose/prevenção & controle , Animais , Queimaduras/complicações , Queimaduras/metabolismo , Queimaduras/patologia , Linhagem Celular , Eritropoetina/administração & dosagem , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Trombose/complicações , Trombose/metabolismo , Trombose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização/efeitos dos fármacos
8.
Nat Biotechnol ; 30(2): 179-83, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22252509

RESUMO

Drug-induced liver injury (DILI) limits the development and application of many therapeutic compounds and presents major challenges to the pharmaceutical industry and clinical medicine. Acetaminophen-containing compounds are among the most frequently prescribed drugs and are also the most common cause of DILI. Here we describe a pharmacological strategy that targets gap junction communication to prevent amplification of fulminant hepatic failure and acetaminophen-induced hepatotoxicity. We demonstrate that connexin 32 (Cx32), a key hepatic gap junction protein, is an essential mediator of DILI by showing that mice deficient in Cx32 are protected against liver damage, acute inflammation and death caused by liver-toxic drugs. We identify a small-molecule inhibitor of Cx32 that protects against liver failure and death in wild-type mice when co-administered with known hepatotoxic drugs. These findings indicate that gap junction inhibition could provide a pharmaceutical strategy to limit DILI and improve drug safety.


Assuntos
Acetaminofen/efeitos adversos , Compostos de Boro/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Substâncias Protetoras/administração & dosagem , Acetaminofen/análogos & derivados , Acetaminofen/uso terapêutico , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Conexinas/deficiência , Células HeLa , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Tioacetamida/administração & dosagem , Tioacetamida/efeitos adversos , Tioacetamida/análogos & derivados , Proteína beta-1 de Junções Comunicantes
9.
Behav Brain Res ; 226(2): 606-12, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22008380

RESUMO

Early enrichment (EE) programs provide a well-established approach to mitigate the deleterious effects of childhood adversity. To better understand the therapeutic features of EE, in the current study we compared the effect of two forms of nesting material on isolation reared (IR) rats. We found that both materials, absent of social and any other physical enrichment, significantly improved wound healing rates. The results suggest that this animal model may provide useful insights into the critical components of EE.


Assuntos
Meio Ambiente , Abrigo para Animais , Isolamento Social , Cicatrização , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Meio Social
10.
Biol Psychiatry ; 70(10): 920-7, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21762880

RESUMO

BACKGROUND: Men and women differ in their ability to extinguish fear. Fear extinction requires the activation of brain regions, including the ventromedial prefrontal cortex (vmPFC) and amygdala. Could estradiol modulate the activity of these brain regions during fear extinction? METHODS: All rat experiments were conducted in naturally cycling females. Rats underwent fear conditioning on Day 1. On Day 2, they underwent extinction training during the metestrus phase of the cycle (low estrogen and progesterone). Extinction recall was assessed on Day 3. Systemic injections of estrogen receptor-beta and -alpha agonists and of estradiol were administered at different time points to assess their influence on extinction consolidation and c-Fos expression in the vmPFC and amygdala. In parallel, healthy naturally cycling women underwent an analogous fear conditioning extinction training in a 3T functional magnetic resonance scanner. Measurement of their estradiol levels and skin conductance responses were obtained throughout the experiment. RESULTS: In female rats, administration of the estrogen-receptor beta (but not alpha) agonist facilitated extinction recall. Immediate (but not delayed) postextinction training administration of estradiol facilitated extinction memory consolidation and increased c-Fos expression in the vmPFC while reducing it in the amygdala. In parallel, natural variance in estradiol in premenopausal cycling women modulated vmPFC and amygdala reactivity and facilitated extinction recall. CONCLUSIONS: We provide translational evidence that demonstrates the influence of endogenous and exogenous estradiol on the fear extinction network. Our data suggest that women's endogenous hormonal status should be considered in future neurobiological research related to anxiety and mood disorders.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Extinção Psicológica/fisiologia , Medo/psicologia , Córtex Pré-Frontal/efeitos dos fármacos , Adolescente , Adulto , Tonsila do Cerebelo/irrigação sanguínea , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Estradiol/agonistas , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Nitrilas/farmacologia , Oxigênio/sangue , Fenóis , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Escalas de Graduação Psiquiátrica , Psicofísica , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Adulto Jovem
11.
PLoS One ; 4(5): e5523, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19436750

RESUMO

BACKGROUND: Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. METHODOLOGY/PRINCIPAL FINDINGS: In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. CONCLUSIONS/SIGNIFICANCE: This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress.


Assuntos
Comportamento Animal/fisiologia , Ocitocina/farmacologia , Isolamento Social , Cicatrização/fisiologia , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Meio Social , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...