Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892722

RESUMO

Despite substantial evidence supporting the efficacy of prebiotics for promoting host health and stress resilience, few experiments present evidence documenting the dynamic changes in microbial ecology and fecal microbially modified metabolites over time. Furthermore, the literature reports a lack of reproducible effects of prebiotics on specific bacteria and bacterial-modified metabolites. The current experiments examined whether consumption of diets enriched in prebiotics (galactooligosaccharides (GOS) and polydextrose (PDX)), compared to a control diet, would consistently impact the gut microbiome and microbially modified bile acids over time and between two research sites. Male Sprague Dawley rats were fed control or prebiotic diets for several weeks, and their gut microbiomes and metabolomes were examined using 16S rRNA gene sequencing and untargeted LC-MS/MS analysis. Dietary prebiotics altered the beta diversity, relative abundance of bacterial genera, and microbially modified bile acids over time. PICRUSt2 analyses identified four inferred functional metabolic pathways modified by the prebiotic diet. Correlational network analyses between inferred metabolic pathways and microbially modified bile acids revealed deoxycholic acid as a potential network hub. All these reported effects were consistent between the two research sites, supporting the conclusion that dietary prebiotics robustly changed the gut microbial ecosystem. Consistent with our previous work demonstrating that GOS/PDX reduces the negative impacts of stressor exposure, we propose that ingesting a diet enriched in prebiotics facilitates the development of a health-promoting gut microbial ecosystem.


Assuntos
Microbioma Gastrointestinal , Glucanos , Oligossacarídeos , Prebióticos , Ratos Sprague-Dawley , Animais , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Ratos , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , RNA Ribossômico 16S , Dieta/métodos
2.
Front Neurosci ; 16: 889211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685770

RESUMO

Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle via myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption. In this study, we test the hypothesis that administration of a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) in adult male rats improves sleep in response to repeated sleep disruption and during recovery sleep. We found that animals fed the GOS/PDX prebiotic diet for 4 weeks exhibit increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during 5 days of sleep disruption and increased total sleep time during 24 h of recovery from sleep disruption compared to animals fed a control diet, despite similar baseline sleep characteristics. Further, the GOS/PDX prebiotic diet led to significant changes in the fecal microbiome. Consistent with previous reports, the prebiotic diet increased the relative abundance of the species Parabacteroides distasonis, which positively correlated with sleep parameters during recovery sleep. Taken together, these findings suggest that the GOS/PDX prebiotic diet may offer an approach to improve resilience to the physiologic challenge of sleep disruption, in part through impacts on the microbiome.

3.
Eur J Neurosci ; 55(9-10): 2939-2954, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34514665

RESUMO

Affective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively. Here, we examined anxiety-like, fear, and despair behaviours in both male and female mice of these two different mutants. Compared with wild-type mice, we found reductions in fear and anxiety-like behaviours in both mutant lines and in both sexes, with the tau mutants exhibiting the greatest phenotypic changes. However, the behavioural despair had distinct phenotypic patterns, with markedly less behavioural despair in female null mutants, but not in tau mutants of either sex. To determine whether abnormal light entrainment of tau mutants to 24-h light-dark cycles contributes to these phenotypic differences, we also examined these behaviours in tau mutants on a 20-h light-dark cycle close to their endogenous circadian period. The normalized entrainment restored more wild-type-like behaviours for fear and anxiety, but it induced behavioural despair in tau mutant females. These data show that both mutations of Csnk1e broadly affect fear and anxiety-like behaviours, while the effects on behavioural despair vary with genetics, photoperiod, and sex, suggesting that the mechanisms by which Csnk1e affects fear and anxiety-like behaviours may be similar, but distinct from those affecting behavioural despair. Our study also provides experimental evidence in support of the hypothesis of beneficial outcomes from properly entrained circadian rhythms in terms of the anxiety-like and fear behaviours.


Assuntos
Caseína Quinase 1 épsilon , Relógios Circadianos , Animais , Caseína Quinase 1 épsilon/genética , Ritmo Circadiano/genética , Feminino , Masculino , Camundongos , Atividade Motora , Fotoperíodo
5.
Brain Behav Immun ; 97: 150-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242738

RESUMO

Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.


Assuntos
Ácidos e Sais Biliares , Prebióticos , Animais , Bacteroidetes , Cromatografia Líquida , Ritmo Circadiano , Dieta , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Sono , Espectrometria de Massas em Tandem
6.
Sci Rep ; 11(1): 7797, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833255

RESUMO

Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD. We integrate multi-omics data from two extensive public resources, a human Alzheimer's disease cohort from the Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse population in which NREM delta power was measured (N = 98). Two cortical gene networks, including a CLOCK-dependent circadian network, are associated with NREM delta power and AD tauopathy progression. These networks were validated in independent mouse and human cohorts. Identifying gene networks related to preclinical AD elucidate possible mechanisms associated with the early disease phase and potential targets to alter the disease course.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebelar/metabolismo , Redes Reguladoras de Genes , Transtornos do Sono-Vigília/patologia , Animais , Estudos de Coortes , Humanos , Camundongos , Camundongos Endogâmicos C57BL
7.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283862

RESUMO

STUDY OBJECTIVES: Sleep deprivation induces systemic inflammation that may contribute to stress vulnerability and other pathologies. We tested the hypothesis that immunization with heat-killed Mycobacterium vaccae NCTC 11659 (MV), an environmental bacterium with immunoregulatory and anti-inflammatory properties, prevents the negative impacts of 5 days of sleep disruption on stress-induced changes in sleep, behavior, and physiology in mice. METHODS: In a 2 × 2 × 2 experimental design, male C57BL/6N mice were given injections of either MV or vehicle on days -17, -10, and -3. On days 1-5, mice were exposed to intermittent sleep disruption, whereby sleep was disrupted for 20 h per day. Immediately following sleep disruption, mice were exposed to 1-h social defeat stress or novel cage (control) conditions. Object location memory (OLM) testing was conducted 24 h after social defeat, and tissues were collected 6 days later to measure inflammatory markers. Sleep was recorded using electroencephalography (EEG) and electromyography (EMG) throughout the experiment. RESULTS: In vehicle-treated mice, only the combination of sleep disruption followed by social defeat (double hit): (1) increased brief arousals and NREM beta (15-30 Hz) EEG power in sleep immediately post-social defeat compared to baseline; (2) induced an increase in the proportion of rapid-eye-movement (REM) sleep and number of state shifts for at least 5 days post-social defeat; and (3) induced hyperlocomotion and lack of habituation in the OLM task. Immunization with MV prevented most of these sleep and behavioral changes. CONCLUSIONS: Immunization with MV ameliorates a stress-induced sleep and behavioral phenotype that shares features with human posttraumatic stress disorder.


Assuntos
Mycobacterium , Transtornos de Estresse Pós-Traumáticos , Animais , Nível de Alerta , Eletroencefalografia , Temperatura Alta , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacteriaceae , Fenótipo , Sono
8.
Cell ; 183(5): 1162-1184, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242416

RESUMO

Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Astronautas , Saúde , Humanos , Microbiota , Fatores de Risco
9.
Ecol Evol ; 10(20): 11322-11334, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144967

RESUMO

Competition for resources often contributes strongly to defining an organism's ecological niche. Endogenous biological rhythms are important adaptations to the temporal dimension of niches, but how other organisms influence such temporal niches has not been much studied, and the role of competition in particular has been even less examined. We investigated how interspecific competition and intraspecific competition for resources shape an organism's activity rhythms.To do this, we simulated communities of one or two species in an agent-based model. Individuals in the simulation move according to a circadian activity rhythm and compete for limited resources. Probability of reproduction is proportional to an individual's success in obtaining resources. Offspring may have variance in rhythm parameters, which allow for the population to evolve over time.We demonstrate that when organisms are arrhythmic, one species will always be competitively excluded from the environment, but the existence of activity rhythms allows niche differentiation and indefinite coexistence of the two species. Two species which are initially active at the same phase will differentiate their phase angle of entrainment over time to avoid each other. When only one species is present in an environment, competition within the species strongly selects for niche expansion through arrhythmicity, but the addition of an interspecific competitor facilitates evolution of increased rhythmic amplitude when combined with additional adaptations for temporal specialization. Finally, if individuals preferentially mate with others who are active at similar times of day, then disruptive selection by intraspecific competition can split one population into two reproductively isolated groups separated in activity time.These simulations suggest that biological rhythms are an effective method to temporally differentiate ecological niches and that competition is an important ecological pressure promoting the evolution of rhythms and sleep. This is the first study to use ecological modeling to examine biological rhythms.

10.
PLoS One ; 15(2): e0229001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078624

RESUMO

It has been established in recent years that the gut microbiome plays a role in health and disease, potentially via alterations in metabolites that influence host physiology. Although sleep disruption and gut dysbiosis have been associated with many of the same diseases, studies investigating the gut microbiome in the context of sleep disruption have yielded inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene amplicons and untargeted LC-MS/MS mass spectrometry. We found global shifts in both the microbiome and metabolome in the sleep-disrupted group on the second day of recovery sleep, when most sleep parameters had recovered to baseline levels. We observed an increase in the Firmicutes:Bacteroidetes ratio, along with decreases in the genus Lactobacillus, phylum Actinobacteria, and genus Bifidobacterium in sleep-disrupted mice compared to control mice. The latter two taxa remained low at the fourth day post-sleep disruption. We also identified multiple classes of fecal metabolites that were differentially abundant in sleep-disrupted mice, some of which are physiologically relevant and commonly influenced by the microbiome. This included bile acids, and inference of microbial functional gene content suggested reduced levels of the microbial bile salt hydrolase gene in sleep-disrupted mice. Overall, this study adds to the evidence base linking disrupted sleep to the gut microbiome and expands it to the fecal metabolome, identifying sleep disruption-sensitive bacterial taxa and classes of metabolites that may serve as therapeutic targets to improve health after poor sleep.


Assuntos
Bactérias , Fezes/microbiologia , Microbioma Gastrointestinal , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Privação do Sono/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Masculino , Camundongos
11.
Front Physiol ; 11: 524833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469429

RESUMO

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

12.
Sleep ; 42(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504971

RESUMO

STUDY OBJECTIVES: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. METHODS: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. RESULTS: NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1-4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. DISCUSSION: These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.


Assuntos
Afeto/fisiologia , Ritmo Circadiano/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Compostos de Espiro/farmacologia , Afeto/efeitos dos fármacos , Animais , Ritmo Circadiano/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Sono/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Compostos de Espiro/uso terapêutico , Vigília/efeitos dos fármacos , Vigília/fisiologia
13.
Microbiome ; 7(1): 113, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399081

RESUMO

BACKGROUND: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive. METHODS: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis. RESULTS: We report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation. CONCLUSIONS: These observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions.


Assuntos
Bactérias/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Voo Espacial , Animais , Bactérias/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
14.
Neurol Clin ; 37(3): 487-504, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256785

RESUMO

In mammals, genetic influences of circadian rhythms occur at many levels. A set of core "clock genes" have been identified that form a feedback loop of gene transcription and translation. The core genetic clockwork generates circadian rhythms in cells throughout the body. Polymorphisms in both core clock genes and interacting genes contribute to individual differences in the expression and properties of circadian rhythms. The circadian clock profoundly influences the patterns of gene expression and cellular functions, providing a mechanistic basis for the impact of the genetic circadian system on normal physiological processes as well as the development of diseases.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Animais , Humanos
15.
Sleep ; 42(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070769

RESUMO

STUDY OBJECTIVES: Determine stability of individual differences in executive function, cognitive processing speed, selective visual attention, and maintenance of wakefulness during simulated sustained operations with combined sleep restriction and circadian misalignment. METHODS: Twenty healthy adults (eight female), aged 25.7 (±4.2 SD), body mass index (BMI) 22.3 (±2.1) kg/m2 completed an 18-day protocol twice. Participants maintained habitual self-selected 8-hour sleep schedules for 2 weeks at home prior to a 4-day laboratory visit that included one sleep opportunity per day: 8 hours on night 1, 3 hours on night 2, and 3 hours on mornings 3 and 4. After 3 days of unscheduled sleep at home, participants repeated the entire protocol. Stability and task dependency of individual differences in performance were quantified by intra-class correlation coefficients (ICC) and Kendall's Tau, respectively. RESULTS: Performance on Stroop, Visual Search, and the Maintenance of Wakefulness Test were highly consistent within individuals during combined sleep restriction and circadian misalignment. Individual differences were trait-like as indicated by ICCs (0.54-0.96) classified according to standard criteria as moderate to almost perfect. Individual differences on other performance tasks commonly reported in sleep studies showed fair to almost perfect ICCs (0.22-0.94). Kendall's rank correlations showed that individual vulnerability to sleep restriction and circadian misalignment varied by task and by metric within a task. CONCLUSIONS: Consistent vulnerability of higher-order cognition and maintenance of wakefulness to combined sleep restriction and circadian misalignment has implications for the development of precision countermeasure strategies for workers performing safety-critical tasks, e.g. military, police, health care workers and emergency responders.


Assuntos
Ritmo Circadiano/fisiologia , Cognição/fisiologia , Desempenho Psicomotor/fisiologia , Privação do Sono/fisiopatologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Adulto , Atenção/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Individualidade , Masculino , Polissonografia , Sono/fisiologia , Análise e Desempenho de Tarefas , Vigília/fisiologia
16.
Science ; 364(6436)2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30975860

RESUMO

To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.


Assuntos
Adaptação Fisiológica , Astronautas , Voo Espacial , Imunidade Adaptativa , Peso Corporal , Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , Dano ao DNA , Metilação de DNA , Microbioma Gastrointestinal , Instabilidade Genômica , Humanos , Masculino , Homeostase do Telômero , Fatores de Tempo , Estados Unidos , United States National Aeronautics and Space Administration
17.
Sci Rep ; 9(1): 4808, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886221

RESUMO

In addition to the characteristic motor symptoms, Parkinson's disease (PD) often involves a constellation of sleep and mood symptoms. However, the mechanisms underlying these comorbidities are largely unknown. We have previously reconstructed gene networks in the striatum of a population of (C57BL/6J x A/J) F2 mice and associated the networks to sleep and affective phenotypes, providing a resource for integrated analyses to investigate perturbed sleep and affective functions at the gene network level. Combining this resource with PD-relevant transcriptomic datasets from humans and mice, we identified four networks that showed elevated gene expression in PD patients, including a circadian clock and mitotic network that was altered similarly in mouse models of PD. We then utilized multiple types of omics data from public databases and linked this gene network to postsynaptic dopamine signaling in the striatum, CDK1-modulated transcriptional regulation, and the genetic susceptibility of PD. These findings suggest that dopamine deficiency, a key aspect of PD pathology, perturbs a circadian/mitotic gene network in striatal neurons. Since the normal functions of this network were relevant to sleep and affective behaviors, these findings implicate that dysregulation of functional gene networks may be involved in the emergence of non-motor symptoms in PD. Our analyses present a framework for integrating multi-omics data from diverse sources in mice and humans to reveal insights into comorbid symptoms of complex diseases.


Assuntos
Sintomas Afetivos/genética , Corpo Estriado/patologia , Dopamina/deficiência , Redes Reguladoras de Genes/fisiologia , Doença de Parkinson/genética , Sono/genética , Sintomas Afetivos/patologia , Sintomas Afetivos/fisiopatologia , Animais , Proteína Quinase CDC2/metabolismo , Relógios Circadianos/genética , Corpo Estriado/citologia , Corpo Estriado/fisiopatologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transcrição Gênica
18.
Sci Adv ; 4(7): eaat1294, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30050989

RESUMO

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed of circadian rhythm regulators and neuronal activity-dependent immediate-early genes. The key upstream driver of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into the role of sleep in affective function and MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Redes Reguladoras de Genes , Privação do Sono/patologia , Animais , Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Ritmo Circadiano/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Locos de Características Quantitativas , Privação do Sono/tratamento farmacológico , Privação do Sono/genética , Transcriptoma
19.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918452

RESUMO

BACKGROUND: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption-another modern life style habit-in promoting alcohol-associated CRC. METHOD: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. RESULTS: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. CONCLUSIONS: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.


Assuntos
Alcoolismo/complicações , Carcinogênese/patologia , Neoplasias Colorretais/etiologia , Inflamação/patologia , Intestinos/microbiologia , Intestinos/patologia , Microbiota , Fotoperíodo , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Disbiose/complicações , Disbiose/microbiologia , Disbiose/patologia , Células Epiteliais/patologia , Comportamento Alimentar , Mastócitos/patologia , Camundongos
20.
PLoS Genet ; 12(7): e1006137, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27390852

RESUMO

Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFß-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.


Assuntos
Astrócitos/metabolismo , Proteína Forkhead Box O3/genética , Doença de Huntington/genética , Estresse Psicológico/genética , Fator de Crescimento Transformador beta/genética , Animais , Astrócitos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Proteína Forkhead Box O3/biossíntese , Redes Reguladoras de Genes , Humanos , Doença de Huntington/fisiopatologia , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurogênese/genética , Transdução de Sinais , Sono/genética , Estresse Psicológico/metabolismo , Transcriptoma/genética , Fator de Crescimento Transformador beta/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...