Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 78(3): 209-16, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10805177

RESUMO

This study investigates the solution thermodynamics of the iron complexes of dexrazoxane (ICRF-187, (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane), [Fe(ADR-925)](+/0), and its desmethyl derivative ICRF-154, [Fe(ICRF-247)H2O](+/0). The solid state structure of [Fe(ICRF-247)H2O]+ is also reported. [Fe(ICRF-247)H2O]Br x 0.5NaBr x H2O crystallizes in the P42(1)2 space group with Z = 4, a = 14.9851(8), b = 14.9851(8), c = 8.0825(9) A and R = 0.03(2) for 1839 reflections and exhibits a pentagonal bipyramidal geometry with a labile water molecule occupying the seventh coordination site. Potentiometric titrations (FeL = 8.5 mM, 0.1 M NaNO3, 25 degrees C) reveal stable monomeric complexes (log Kf = 18.2 +/- 0.1, [Fe(ADR-925)]+, and 17.4 +/- 0.1, [Fe(ICRF-247)H2O]+) exist in solution at relatively low pH. Upon addition of base, the iron-bound water is deprotonated; the pKa values for [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ are 5.63 +/- 0.07 and 5.84 +/- 0.07, respectively. At higher pH both complexes undergo mu-oxo dimerization characterized by log Kd values of 2.68 +/- 0.07 for [Fe(ICRF-247)H2O]+ and 2.23 +/- 0.07 for [Fe(ADR-925)]+. In the presence of an oxidant and reductant, both [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ produce hydroxyl radicals that cleave pBR322 plasmid DNA at pH 7 in a metal complex concentration-dependent manner. At low metal complex concentrations (approximately 10(-5) M) where the monomeric form predominates, cleavage by both FeICRF complexes is efficient while at higher concentrations (approximately 5 x 10(-4) M) DNA cleavage is hindered. This change in reactivity is in part accounted for by dimer formation.


Assuntos
Fármacos Cardiovasculares/química , DNA/química , Ferro/química , Razoxano/análogos & derivados , Razoxano/química , Cristalografia por Raios X , Hidrólise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Soluções , Termodinâmica
2.
Met Based Drugs ; 4(4): 199-205, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-18475789

RESUMO

Use of the antitumor drug doxorubicin is limited by cardiomyopathic side-effects which are believed to be due to iron-mediated hydroxyl radical generation. Dexrazoxane reduces this cardiotoxicity, possibly by removal of iron from doxorubicin by the EDTA-like hydrolysis product of dexrazoxane, ADR-925. However, EDTA-diimides like dexrazoxane, previously used as antitumor agents, are themselves carcinogenic, and recent studies have found that Fe-ADR-925 can also promote hydroxyl radical production. This study demonstrates that, like Fe-EDTA, Fe-ADR-925 and a related desmethyl complex can cleave plasmid DNA under Fenton conditions, and suggests by radical scavenger study that this cleavage is probably via the hydroxyl radical. Differences in DNA cleavage dependence upon concentrations of Fe-EDTA, Fe-ADR-925 and Fe-EDTA-bisamide can be explained by differences in the solution chemistry of the complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...