Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 14316, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085033

RESUMO

Recent developments in integrated photonics technology are opening the way to the fabrication of complex linear optical interferometers. The application of this platform is ubiquitous in quantum information science, from quantum simulation to quantum metrology, including the quest for quantum supremacy via the boson sampling problem. Within these contexts, the capability to learn efficiently the unitary operation of the implemented interferometers becomes a crucial requirement. In this letter we develop a reconstruction algorithm based on a genetic approach, which can be adopted as a tool to characterize an unknown linear optical network. We report an experimental test of the described method by performing the reconstruction of a 7-mode interferometer implemented via the femtosecond laser writing technique. Further applications of genetic approaches can be found in other contexts, such as quantum metrology or learning unknown general Hamiltonian evolutions.


Assuntos
Ciência da Informação/tendências , Interferometria/instrumentação , Óptica e Fotônica/métodos , Algoritmos , Animais , Técnicas Genéticas , Humanos , Lasers , Aprendizagem , Luz , Fenômenos Ópticos , Teoria Quântica
2.
Sci Rep ; 6: 28881, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381743

RESUMO

Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology.

3.
Sci Adv ; 1(3): e1400255, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26601164

RESUMO

Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

4.
Phys Rev Lett ; 111(13): 130503, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116759

RESUMO

We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

5.
Nat Commun ; 4: 1606, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511471

RESUMO

The main features of quantum mechanics reside in interference deriving from the superposition of different quantum states. While current quantum optical technology enables two-photon interference both in bulk and integrated systems, simultaneous interference of more than two particles, leading to richer quantum phenomena, is still a challenging task. Here we report the experimental observation of three-photon interference in an integrated three-port directional coupler realized by ultrafast laser writing. By exploiting the capability of this technique to produce three-dimensional structures, we realized and tested in the quantum regime a three-port beam splitter, namely a tritter, which allowed us to observe bosonic coalescence of three photons. These results open new important perspectives in many areas of quantum information, such as fundamental tests of quantum mechanics with increasing number of photons, quantum state engineering, quantum sensing and quantum simulation.

6.
Sci Rep ; 2: 862, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181189

RESUMO

Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics.

7.
Phys Rev Lett ; 108(23): 233602, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003955

RESUMO

The sensitivity in optical interferometry is strongly affected by losses during the signal propagation or at the detection stage. The optimal quantum states of the probing signals in the presence of loss were recently found. However, in many cases of practical interest, their associated accuracy is worse than the one obtainable without employing quantum resources (e.g., entanglement and squeezing) but neglecting the detector's loss. Here, we detail an experiment that can reach the latter even in the presence of imperfect detectors: it employs a phase-sensitive amplification of the signals after the phase sensing, before the detection. We experimentally demonstrated the feasibility of a phase estimation experiment able to reach its optimal working regime. Since our method uses coherent states as input signals, it is a practical technique that can be used for high-sensitivity interferometry and, in contrast to the optimal strategies, does not require one to have an exact characterization of the loss beforehand.


Assuntos
Interferometria/métodos , Modelos Teóricos , Teoria Quântica , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
8.
Phys Rev Lett ; 105(11): 113602, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867572

RESUMO

In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification process on the microscopic probe after the interaction with the sample, we can beat the losses' detrimental effect on the phase measurement which affects the single-photon state after its interaction with the sample, and thus improve the achievable sensitivity.

9.
Phys Rev Lett ; 104(5): 050403, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366751

RESUMO

We present the proposition of an experiment in which the multiphoton quantum superposition consisting of N approximately 10{5} particles generated by a quantum-injected optical parametric amplifier, seeded by a single-photon belonging to an Einstein-Podolsky-Rosen entangled pair, is made to interact with a mirror-Bose-Einstein condensate (BEC) shaped as a Bragg interference structure. The overall process will realize a macroscopic quantum superposition involving a microscopic single-photon state of polarization entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in spacelike separated distant places.

10.
Opt Express ; 16(22): 17609-15, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958041

RESUMO

We present the realization of a ultra fast shutter for optical fields, which allows to preserve a generic polarization state, based on a self-stabilized interferometer. It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of the polarization state is high. The shutter is realized through two beam displacing prisms and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom interfaces in quantum information processing.

11.
Phys Rev Lett ; 100(25): 253601, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643660

RESUMO

A macrostate consisting of N approximately 3.5x10{4} photons in a quantum superposition and entangled with a far apart single-photon state (microstate) is generated. Precisely, an entangled photon pair is created by a nonlinear optical process; then one photon of the pair is injected into an optical parametric amplifier operating for any input polarization state, i.e., into a phase-covariant cloning machine. Such transformation establishes a connection between the single photon and the multiparticle fields. We then demonstrate the nonseparability of the bipartite system by adopting a local filtering technique within a positive operator valued measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...