Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(2): 407-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578366

RESUMO

Ashy stem blight (ASB) caused by Macrophomina phaseolina (Tassi) Goidanich affects the common bean (Phaseolus vulgaris L.) at all growing stages. Higher levels of resistance were observed in Andean common beans, but specific resistant quantitative trait loci (QTLs) conferring resistance to this pathogen have not been reported in this gene pool. The objectives of this research were to: (i) conduct a genome-wide association study (GWAS) and QTL mapping for resistance in the Andean breeding line PRA154; and (ii) identify single nucleotide polymorphism (SNP) markers and candidate genes for ASB resistance. Phenotyping was conducted under greenhouse conditions by inoculating the 107 F6:7 recombinant inbred lines (RILs) derived from the cross between the susceptible cultivar 'Verano' and the partial-resistant breeding line PRA154 twice with the M. phaseolina isolate PRI21. Genotyping was performed with 109,040 SNPs distributed across all 11 P. vulgaris chromosomes. A novel major QTL was located between 28,761,668 and 31,263,845 bp, extending 2.5 Mbp on chromosome Pv07, and the highest significant SNP markers were Chr07_28761668_A_G, Chr07_29131720_G_A, and Chr07_31263845_C_T with the highest LOD (more than 10 in most of the cases) and R-squared values, explaining 40% of the phenotypic variance of the PRI21 isolate. The gene Phvul.007G173900 (methylcrotonyl-CoA carboxylase alpha chain and mitochondrial 3-methylcrotonyl-CoA carboxylase 1 [MCCA]) with a size of 10,891 bp, located between 29,131,591 and 29,142,481 bp on Pv07, was identified as one candidate for ASB resistance in PRA154, and it contained Chr07_29131720_G_A. The QTL and genetic marker information could be used to assist common bean breeders to develop germplasm and cultivars with ASB resistance through molecular breeding.


Assuntos
Phaseolus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Melhoramento Vegetal , Mapeamento Cromossômico
2.
Cureus ; 15(5): e38638, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284393

RESUMO

This report discusses the case of a 20-year-old female patient who presented with acute abdominal pain, nausea, and vomiting. Initial laboratory analyses suggested an inflammatory process, but imaging studies failed to reveal pathologies. The patient underwent a diagnostic laparoscopy, which showed a thickened and multicystic appendix with signs of acute inflammation. Pathology indicated a positive cytology for malignancy, with a grade 1 mixed well-differentiated neuroendocrine tumor (NET) and high-grade mucinous neoplasm identified in the middle and distal thirds of the appendix. Finding both tumors in the same patient is extremely rare and has been reported in a few cases. The case emphasizes the importance of considering appendiceal tumors in the differential diagnosis of acute abdominal pain, even in young patients, and highlights the value of laparoscopy in their diagnosis. The early detection and appropriate management of appendiceal tumors are crucial for improving patient outcomes.

3.
Front Plant Sci ; 13: 1019263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479519

RESUMO

Ashy stem blight (ASB), caused by the fungus Macrophomina phaseolina (Tassi) Goidanich is an important disease of the common bean (Phaseolus vulgaris L.). It is important to identify quantitative trait loci (QTL) for ASB resistance and introgress into susceptible cultivars of the common bean. The objective of this research was to identify QTL and single nucleotide polymorphism (SNP) markers associated with ASB resistance in recombinant inbred lines (RIL) derived from a cross between BAT 477 and NY6020-4 common bean. One hundred and twenty-six F6:7 RIL were phenotyped for ASB in the greenhouse. Disease severity was scored on a scale of 1-9. Genotyping was performed using whole genome resequencing with 2x common bean genome size coverage, and over six million SNPs were obtained. After being filtered, 72,017 SNPs distributed on 11 chromosomes were used to conduct the genome-wide association study (GWAS) and QTL mapping. A novel QTL region of ~4.28 Mbp from 35,546,329 bp to 39,826,434 bp on chromosome Pv03 was identified for ASB resistance. The two SNPs, Chr03_39824257 and Chr03_39824268 located at 39,824,257 bp and 39,824,268 bp on Pv03, respectively, were identified as the strongest markers associated with ASB resistance. The gene Phvul.003G175900 (drought sensitive, WD repeat-containing protein 76) located at 39,822,021 - 39,824,655 bp on Pv03 was recognized as one candidate for ASB resistance in the RIL, and the gene contained the two SNP markers. QTL and SNP markers may be used to select plants and lines for ASB resistance through marker-assisted selection (MAS) in common bean breeding.

4.
Front Plant Sci ; 13: 1052398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507399

RESUMO

Ashy stem blight (ASB) caused by the necrotrophic fungus Macrophomina phaseolina (Tassi) Goidanich is an important disease in common bean (Phaseolus vulgaris L.) in the Americas and worldwide. Low to intermediate levels of ASB resistance exist in cultivated and landrace genotypes of the common bean and the tertiary gene pool. However, cultivars with higher levels of resistance are not yet available. Our objectives were to 1) pyramid higher levels of resistance from multiple parent populations within the primary gene pool and 2) compare the response of the newly developed breeding lines (BL) with known sources of resistance. The BL UPR-Mp-22, UPR-Mp-34, UPR-Mp-42, and UPR-Mp-48, known sources of resistance, and susceptible checks were inoculated twice per plant with the PRI21 M. phaseolina isolate in the greenhouse and field trials conducted in Isabela and Lajas, Puerto Rico. None of the genotypes tested were resistant (mean scores 1-3). However, the new black UPR-Mp-42 and white UPR-Mp-48 BL had an intermediate response (mean scores 4-6) compared to white common bean genotypes 'Bella,' NY6020-4, and 'Verano' and black bean TARS-MST1 that were susceptible (scores ≥7) in all environments. Andean genotypes A 195, PRA154, PRA155, and UPR-Mp-22 were intermediate in the greenhouse. In contrast, UPR-Mp-34 had significantly lower scores than BAT 477 that had a susceptible reaction in the greenhouse in Isabela and in the field in Lajas and SEA 5 that was susceptible in all environments. These new BL possess an enhanced ASB resistance and may be used to improve common bean cultivars or germplasms of different market classes.

5.
Insects ; 13(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35323576

RESUMO

Insecticide sprays are a common practice to control corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), in corn (Zea mays L.) at reproductive stages. Our objectives were to determine (1) the most appropriate time for insecticide applications and (2) the effect of four insecticides on the survival of larvae as well as their weight. ß-cyfluthrin (0.4 mL/L), chlorantraniliprole (0.6 mL/L), emamectin benzoate (0.2 g/L), and spinetoram (1.5 mL/L) were sprayed on silks of sweet corn planted in Isabela and Lajas, Puerto Rico 3 h before and 24 and 48 h after pollination. The number of kernels produced and the damage of larvae on kernels were quantified at harvest. In addition, percentages of mortality and changes on larval weight were noted at 96 h after insecticide applications. Insecticide sprays at 3 h before pollination reduced the number of kernels or were similar to the control in all treatments. However, emamectin benzoate sprayed in Lajas and chlorantraniliprole applied in Isabela at 48 h after pollination increased the number of kernels (281−294) and reduced the damage of larvae on kernels (<0.5%) compared to the control (201−229; >7%). Furthermore, applications of emamectin benzoate caused higher percentages of fall armyworm larval mortality (>70%). Conversely, ß-cyfluthrin and chlorantraniliprole caused lower percentages of mortality (<30%) and only chlorantraniliprole and spinetoram reduced the weight of corn earworm and fall armyworm larvae collected in both locations. This information may help pest management programs and corn breeders to schedule insecticide sprays and pollination in the field.

6.
J Med Entomol ; 58(3): 1234-1240, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33511394

RESUMO

The increase in malaria transmission in the Amazon region motivated vector control units of the Ministry of Health of Ecuador and Peru to investigate Anopheles (Diptera: Culicidae) species present in transmission hotspots. Mosquitoes were collected using prokopack aspirators and CDC light traps (Ecuador) and human landing catch in Peru. In Ecuador, 84 Anopheles were captured from Pastaza, Morona Santiago, and Orellana provinces and identified morphologically [An. (An.) apicimacula Dyar and Knab, An. (Nys.) near benarrochi, An. (Nys.) near oswaldoi, An. (Nys.) near strodei, An. (An.) nimbus (Theobald, 1902), and An. (Nyssorhynchus) sp.]. In Peru, 1,150 Anopheles were collected in Andoas District. A subsample of 166 specimens was stored under silica and identified as An. near oswaldoi, An. darlingi, and An. (An.) mattogrossensis Lutz and Neiva. COI barcode region sequences were obtained for 137 adults (107 from Peru, 30 from Ecuador) identified by ITS2 PCR-RFLP as An. benarrochi Gabaldon, Cova Garcia, and Lopez and retained in the final analysis. Haplotypes from the present study plus An. benarrochi B GenBank sequences grouped separately from Brazilian An. benarrochi GenBank sequences by 44 mutation steps, indicating that the present study specimens were An. benarrochi B. Our findings confirm the presence of An. benarrochi B in Ecuador and reported here for the first time from the Amazonian provinces of Orellana and Morona Santiago. Furthermore, we confirm that the species collected in Andoas District in the Datem del Maranon Province, Peru, is An. benarrochi B, and we observed that it is highly anthropophilic. Overall, the known distribution of An. benarrochi B has been extended and includes southern Colombia, much of Peru and eastern Ecuador.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Animais , Equador , Malária , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...