Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1341590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327490

RESUMO

Fabry disease (FD) is a lysosomal storage disorder due to the impaired activity of the α-galactosidase A (GLA) enzyme which induces Gb3 deposition and multiorgan dysfunction. Exercise intolerance and fatigue are frequent and early findings in FD patients, representing a self-standing clinical phenotype with a significant impact on the patient's quality of life. Several determinants can trigger fatigability in Fabry patients, including psychological factors, cardiopulmonary dysfunctions, and primary alterations of skeletal muscle. The "metabolic hypothesis" to explain skeletal muscle symptoms and fatigability in Fabry patients is growing acknowledged. In this report, we will focus on the primary alterations of the motor system emphasizing the role of skeletal muscle metabolic disarrangement in determining the altered exercise tolerance in Fabry patients. We will discuss the most recent findings about the metabolic profile associated with Fabry disease offering new insights for diagnosis, management, and therapy.

2.
iScience ; 26(3): 106074, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879801

RESUMO

Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...