Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328391

RESUMO

It is well known that pesticides are toxic for mitochondria of animals. The effect of pesticides on plant mitochondria has not been widely studied. The goal of this research is to study the impact of metribuzin and imidacloprid on the amount of damage in the mtDNA of potato (Solanum tuberosum L.) in various conditions. We developed a set of primers to estimate mtDNA damage for the fragments in three chromosomes of potato mitogenome. We showed that both metribuzin and imidacloprid considerably damage mtDNA in vitro. Imidacloprid reduces the rate of seed germination, but does not impact the rate of the growth and number of mtDNA damage in the potato shoots. Field experiments show that pesticide exposure does not induce change in aconitate hydratase activity, and can cause a decrease in the rate of H2O2 production. We can assume that the mechanism of pesticide-induced mtDNA damage in vitro is not associated with H2O2 production, and pesticides as electrophilic substances directly interact with mtDNA. The effect of pesticides on the integrity of mtDNA in green parts of plants and in crop tubers is insignificant. In general, plant mtDNA is resistant to pesticide exposure in vivo, probably due to the presence of non-coupled respiratory systems in plant mitochondria.


Assuntos
Praguicidas , Solanum tuberosum , Animais , Cromossomos , DNA Mitocondrial/genética , Peróxido de Hidrogênio , Mitocôndrias/genética , Praguicidas/toxicidade , Solanum tuberosum/genética
2.
Arch Insect Biochem Physiol ; 102(1): e21595, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31276240

RESUMO

Honey bees Apis mellifera L. are one of the most studied insect species due to their economic importance. The interest in studying honey bees chiefly stems from the recent rapid decrease in their world population, which has become a problem of food security. Nevertheless, there are no systemic studies on the properties of the mitochondria of honey bee flight muscles. We conducted a research of the mitochondria of the flight muscles of A. mellifera L. The influence of various organic substrates on mitochondrial respiration in the presence or absence of adenosine diphosphate (ADP) was investigated. We demonstrated that pyruvate is the optimal substrate for the coupled respiration. A combination of pyruvate and glutamate is required for the maximal respiration rate. We also show that succinate oxidation does not support the oxidative phosphorylation and the generation of membrane potential. We also studied the production of reactive oxygen species by isolated mitochondria. The greatest production of H2 O2 (as a percentage of the rate of oxygen consumed) in the absence of ADP was observed during the respiration supported by α-glycerophosphate, malate, and a combination of malate with another NAD-linked substrate. We showed that honey bee flight muscle mitochondria are unable to uptake Ca2+ -ions. We also show that bee mitochondria are able to oxidize the respiration substrates effectively at the temperature of 50°Ð¡ compared to Bombus terrestris mitochondria, which were more adapted to lower temperatures.


Assuntos
Abelhas/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Cálcio/metabolismo , Respiração Celular , Feminino , Voo Animal , Peróxido de Hidrogênio/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Músculos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...