Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(6): 065109, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611059

RESUMO

We present a multi-purpose radiation furnace designed for x-ray experiments at synchrotrons. The furnace is optimized specifically for dark-field x-ray microscopy (DFXM) of crystalline materials at beamline ID06 of the European Synchrotron Radiation Facility. The furnace can reach temperatures above 1200 °C with a thermal stability better than 10 °C, with heating and cooling rates up to 30 K/s. The non-contact heating design enables samples to be heated either in air or in a controlled atmosphere contained within a capillary tube. The temperature was calibrated via the thermal expansion of an α-iron grain. Temperature profiles in the y and z axes were measured by scanning a thermocouple through the focal spot of the radiation furnace. In the current configuration of the beamline, this furnace can be used for DFXM, near-field x-ray topography, bright-field x-ray nanotomography, high-resolution reciprocal space mapping, and limited powder diffraction experiments. As a first application, we present a DFXM case study on isothermal heating of a commercially pure single crystal of aluminum.

2.
J Synchrotron Radiat ; 25(Pt 6): 1745-1752, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407185

RESUMO

The combination of complementary techniques in the characterization of catalysts under working conditions is a very powerful tool for an accurate and in-depth comprehension of the system investigated. In particular, X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectroscopy (MS) is a powerful combination since XAS characterizes the main elements of the catalytic system (selecting the absorption edge) and DRIFTS monitors surface adsorbates while MS enables product identification and quantification. In the present manuscript, a new reactor cell and an experimental setup optimized to perform time-resolved experiments on heterogeneous catalysts under working conditions are reported. A key feature of this setup is the possibility to work at high temperature and pressure, with a small cell dead volume. To demonstrate these capabilities, performance tests with and without X-rays are performed. The effective temperature at the sample surface, the speed to purge the gas volume inside the cell and catalytic activity have been evaluated to demonstrate the reliability and usefulness of the cell. The setup capability of combining XAS, DRIFTS and MS spectroscopies is demonstrated in a time-resolved experiment, following the reduction of NO by Rh nanoparticles supported on alumina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...