Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(2): 340-346, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36625481

RESUMO

The elucidation of the mechanisms underpinning chirality-induced spin selectivity remains an outstanding scientific challenge. Here we consider the role of delocalized phonon modes in electron transport in chiral structures and demonstrate that spin selectivity can originate from spin-dependent energy and momentum conservation in electron-phonon scattering events. While this mechanism is robust to the specific nature of the vibrational modes, the degree of spin polarization depends on environmental factors, such as the specific temperature and phonon relaxation rates, as well as the presence of external driving fields. This parametric dependence is used to present experimentally testable predictions of our model.

2.
J Phys Chem Lett ; 13(7): 1791-1796, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35170964

RESUMO

We study the nonequilibrium dynamics of electron transmission from a straight waveguide to a helix with spin-orbit coupling. Transmission is found to be spin-selective and can lead to large spin polarizations of the itinerant electrons. The degree of spin selectivity depends on the width of the interface region, and no polarization is found for single-point couplings. We show that this is due to momentum conservation conditions arising from extended interfaces. We therefore identify interface structure and conservation of momentum as crucial ingredients for chiral-induced spin selectivity, and we confirm that this mechanism is robust against static disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...