Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(1-1): 014207, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974596

RESUMO

We report on the dynamical buckling of a spherical shell (a table-tennis ball) impinging in normal incidence on a rigid surface (a glass plate). Experimentally, we observe and decipher the geometrical characteristics of the shell profile in the contact region along with global metrics such as the contact duration and the coefficient of restitution of the linear velocity. We determine, in particular, the onset of the ball buckling instability. We find that, just like in quasi-statics, the shell buckles when the crushing exceeds about twice the thickness of the shell. In addition, for launching conditions resulting in the ball elastic buckling, a drop in the restitution coefficient is observed. A companion numerical finite elements study is set to monitor the different sources of energy and reveals that the added energy loss is mainly due to the friction between the shell surface and the solid substrate.

2.
Elife ; 102021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620312

RESUMO

Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of ß-carotene with light, and human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.


In a biologist's toolkit, the Cre protein holds a special place. Naturally found in certain viruses, this enzyme recognises and modifies specific genetic sequences, creating changes that switch on or off whatever gene is close by. Genetically engineering cells or organisms so that they carry Cre and its target sequences allows scientists to control the activation of a given gene, often in a single tissue or organ. However, this relies on the ability to activate the Cre protein 'on demand' once it is in the cells of interest. One way to do so is to split the enzyme into two pieces, which can then reassemble when exposed to blue light. Yet, this involves the challenging step of introducing both parts separately into a tissue. Instead, Duplus-Bottin et al. engineered LiCre, a new system where a large section of the Cre protein is fused to a light sensor used by oats to detect their environment. LiCre is off in the dark, but it starts to recognize and modify Cre target sequences when exposed to blue light. Duplus-Bottin et al. then assessed how LiCre compares to the two-part Cre system in baker's yeast and human kidney cells. This showed that the new protein is less 'incorrectly' active in the dark, and can switch on faster under blue light. The improved approach could give scientists a better tool to study the role of certain genes at precise locations and time points, but also help them to harness genetic sequences for industry or during gene therapy.


Assuntos
Integrases/genética , Optogenética/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Humanos , Integrases/metabolismo , Luz , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Phys Rev Lett ; 105(20): 208001, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231266

RESUMO

We report on a cellular pattern which spontaneously forms at the surface of a thin layer of a cohesive granular material submitted to in-plane stretching. We present a simple model in which the mechanism responsible of the instability is the "strain softening" exhibited by humid granular materials above a typical strain. Our analysis indicates that such a type of instability should be observed in any system presenting a negative stress sensitivity to strain perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...