Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37481789

RESUMO

Variations in salivary short-chain fatty acids and hydroxy acids (e.g., lactic acid, and 3-hydroxybutyric acid) levels have been suggested to reflect the dysbiosis of human gut microbiota, which represents an additional factor involved in the onset of heart failure (HF) disease. The physical-chemical properties of these metabolites combined with the complex composition of biological matrices mean that sample pre-treatment procedures are almost unavoidable. This work describes a reliable, simple, and organic solvent free protocol for determining short-chain fatty acids and hydroxy acids in stimulated saliva samples collected from heart failure, obese, and hypertensive patients. The procedure is based on in-situ pentafluorobenzyl bromide (PFB-Br) derivatization and HiSorb sorptive extraction coupled to thermal desorption and gas chromatography-tandem mass spectrometry. The HiSorb extraction device is completely compatible with aqueous matrices, thus saving on time and materials associated with organic solvent-extraction methods. A Central Composite Face-Centred experimental design was used for the optimization of the molar ratio between PFB-Br and target analytes, the derivatization temperature, and the reaction time which were 100, 60 °C, and 180 min, respectively. Detection limits in the range 0.1-100 µM were reached using a small amount of saliva (20 µL). The use of sodium acetate-1-13C as an internal standard improved the intra- and inter-day precision of the method which ranged from 10 to 23%. The optimized protocol was successfully applied for what we believe is the first time to evaluate the salivary levels of short chain fatty acids and hydroxy acids in saliva samples of four groups of patients: i) patients admitted to hospital with acute HF symptoms, ii) patients with chronic HF symptoms, iii) patients without HF symptoms but with obesity, and iv) patients without HF symptoms but with hypertension. The first group of patients showed significantly higher levels of salivary acetic acid and lactic acid at hospital admission as well as the lowest values of hexanoic acid and heptanoic acid. Moreover, the significant high levels of acetic acid, propionic acid, and butyric acid observed in HF respect to the other patients suggest the potential link between oral bacteria and gut dysbiosis.


Assuntos
Insuficiência Cardíaca , Hidroxiácidos , Humanos , Hidroxiácidos/análise , Disbiose , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos Voláteis/análise , Ácido Acético , Ácido Butírico , Ácido Láctico/análise , Ácidos Graxos
2.
J Breath Res ; 17(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524075

RESUMO

This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Teste de Esforço/métodos , Volume Sistólico , Acetona , Projetos Piloto , Função Ventricular Esquerda , Testes Respiratórios/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Ecocardiografia/métodos
3.
Biosensors (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121071

RESUMO

Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.


Assuntos
Técnicas Biossensoriais , Imunoglobulinas/análise , Linfócitos , Anticorpos , Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Humanos , Nanoestruturas
4.
Sensors (Basel) ; 19(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744018

RESUMO

Tumor necrosis factor-α (TNF-α) is a biomarker of inflammation that occurs in patients suffering from heart failure (HF). Saliva can be sampled in a non-invasive way, and it is currently gaining importance as matrix alternative to blood in diagnostic and therapy monitoring. This work presents the development of an immunosensor array based on eight screen-printed gold electrodes to detect TNF-α in saliva samples. Two different functionalization strategies of electrodes were compared. In the first, anti-TNF-α antibodies were chemically bonded onto the electrode by functionalization with 4-carboxymethylaniline. The other functionalization procedure involved the binding of antibodies onto polymer-coated magnetic microparticles, which were then deposited onto the electrode by pulsed chronoamperometry. Finally, the chronoamperometry technique was applied to characterize the modified SPEAu. The use of a secondary antibody anti-TNF-α (Ab-TNF-α-HRP) labelled with horseradish peroxidase (HRP, 2 µg·mL-1) was investigated using tetramethylbenzidine (TMB, pH = 3.75) as electrochemical substrate containing 0.2 mM of H2O2. A sandwich-type detection strategy with a secondary antibody anti-TNF-α provided chronoamperometric analyses in 10 s for each sample. Linearity, precision, limit of detection, and selectivity of devices were investigated. Interferences were evaluated by analyzing solutions containing other cytokine produced during the acute stage of inflammation. The immunosensor showed good performance within the clinically relevant concentration range, with a precision of 8%, and a limit of detection of 0.3 pg/mL. Therefore, it may represent a promising tool for monitoring HF in a non-invasive way.


Assuntos
Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Saliva Artificial/química , Saliva/química , Fator de Necrose Tumoral alfa/análise , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Eletrodos , Compostos Ferrosos , Humanos , Imunoensaio/métodos , Limite de Detecção , Modelos Lineares , Microesferas , Polímeros/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...