Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 107(5): 922-30, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12845434

RESUMO

The identification and location of sources of genetic resistance to plant diseases are important contributions to the development of resistant varieties. The combination of different sources and types of resistance in the same genotype should assist in the development of durably resistant varieties. Using a doubled haploid (DH), mapping population of barley, we mapped a qualitative resistance gene ( Rpsx) to barley stripe rust in the accession CI10587 (PI 243183) to the long arm of chromosome 1(7H). We combined the Rpsx gene, through a series of crosses, with three mapped and validated barley stripe rust resistance QTL alleles located on chromosomes 4(4H) (QTL4), 5(1H) (QTL5), and 7(5H) (QTL7). Three different barley DH populations were developed from these crosses, two combining Rpsx with QTL4 and QTL7, and the third combining Rpsx with QTL5. Disease severity testing in four environments and QTL mapping analyses confirmed the effects and locations of Rpsx, QTL4, and QTL5, thereby validating the original estimates of QTL location and effect. QTL alleles on chromosomes 4(4H) and 5(1H) were effective in decreasing disease severity in the absence of the resistance allele at Rpsx. Quantitative resistance effects were mainly additive, although magnitude interactions were detected. Our results indicate that combining qualitative and quantitative resistance in the same genotype is feasible. However, the durability of such resistance pyramids will require challenge from virulent isolates, which currently are not reported in North America.


Assuntos
Hordeum/genética , Imunidade Inata/genética , Doenças das Plantas , Folhas de Planta/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genótipo , Hordeum/microbiologia , Modelos Genéticos , Fenótipo , Especificidade da Espécie
2.
Phytopathology ; 90(10): 1131-6, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18944477

RESUMO

ABSTRACT Leaf rust, caused by Puccinia hordei, is an important disease of barley in many parts of the world. In the eastern United States, this disease was effectively controlled for over 20 years through the deployment of cultivars carrying the resistance gene Rph7. Isolates of P. hordei with virulence for Rph7 appeared in this region in the early 1990s rendering barley cultivars with this gene vulnerable to leaf rust infection. From a preliminary evaluation test, 13 accessions from diverse geographic locations possessed resistance to P. hordei isolate VA90-34, which has virulence for genes Rph1, 2, 4, 6, 7, 8, and 11. Each of these 13 accessions was crossed with susceptible cvs. Moore or Larker to characterize gene number and gene action for resistance to P. hordei. Additionally, the 13 accessions were intercrossed and crossed to host differential lines possessing genes Rph3, Rph5, and Rph9 to determine allelic relationships of resistance genes. Seedlings of F(1), F(2), and BC(1)F(1) populations were evaluated in the greenhouse for their reaction to P. hordei isolate VA90-34. Leaf rust resistance in six of the accessions including Collo sib, CR270.3.2, Deir Alla 105, Giza 119, Gloria, and Lenka is governed by a single dominant gene located at or near the Rph3 locus. All accessions for which the gene Rph3 was postulated to govern leaf rust resistance, except for Deir Alla 105, likely possess an allele different than Rph3.c found in Estate based on the differential reaction to isolates of P. hordei. The resistance gene in Grit and Donan is located at or near the Rph9 locus. Alleles at both the Rph3 and Rph9 loci confer resistance in Femina and Dorina. In addition to Rph3, Caroline and CR366.13.2 likely possess a second unknown recessive gene for leaf rust resistance. Resistance in Carre 180 is governed by a recessive gene that is different from all other genes considered in this study. Identification of both known and unique genes conferring leaf rust resistance in the barley germplasm included in this study provides breeding programs with the knowledge and opportunity to assess currently used sources of leaf rust resistance and to incorporate new sources of resistance into their programs.

3.
Theor Appl Genet ; 88(2): 215-9, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-24185929

RESUMO

Two genes conferring resistance to the barley stripe rust found in Mexico and South America, previously identified as race 24, were mapped to the M arms of barley chromosomes 7 and 4 in a doubled haploid population using molecular markers and the quantitative trait loci (QTL) mapping approach. The resistance gene on chromosome 7 had a major effect, accounting for 57% of the variation in disease severity. The resistance gene on chromosome 4 had a minor effect, accounting for 10% of the variation in trait expression. Two pairs of restriction fragment length polymorphism markers are being used to introgress the resistance genes to North American spring barley using molecular marker-assisted backcrossing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA