Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13006-13016, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524439

RESUMO

Breast milk serves as a vital source of essential nutrients for infants. However, human milk contamination via the transfer of environmental chemicals from maternal exposome is a significant concern for infant health. The milk to plasma concentration (M/P) ratio is a critical metric that quantifies the extent to which these chemicals transfer from maternal plasma into breast milk, impacting infant exposure. Machine learning-based predictive toxicology models can be valuable in predicting chemicals with a high propensity to transfer into human milk. To this end, we build such classification- and regression-based models by employing multiple machine learning algorithms and leveraging the largest curated data set, to date, of 375 chemicals with known milk-to-plasma concentration (M/P) ratios. Our support vector machine (SVM)-based classifier outperforms other models in terms of different performance metrics, when evaluated on both (internal) test data and an external test data set. Specifically, the SVM-based classifier on (internal) test data achieved a classification accuracy of 77.33%, a specificity of 84%, a sensitivity of 64%, and an F-score of 65.31%. When evaluated on an external test data set, our SVM-based classifier is found to be generalizable with a sensitivity of 77.78%. While we were able to build highly predictive classification models, our best regression models for predicting the M/P ratio of chemicals could achieve only moderate R2 values on the (internal) test data. As noted in the earlier literature, our study also highlights the challenges in developing accurate regression models for predicting the M/P ratio of xenobiotic chemicals. Overall, this study attests to the immense potential of predictive computational toxicology models in characterizing the myriad of chemicals in the human exposome.

2.
mBio ; 14(5): e0123223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791794

RESUMO

IMPORTANCE: Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Fosforilação , Virulência , Proteômica , Fatores de Virulência
3.
ACS Omega ; 8(37): 34091-34102, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744817

RESUMO

Type 9 secretion system (T9SS) is one of the least characterized secretion systems exclusively found in the Bacteroidetes phylum, which comprises various environmental and economically relevant bacteria. While T9SS plays a central role in bacterial movement termed gliding motility, survival, and pathogenicity, there is an unmet need for a comprehensive tool that predicts T9SS, gliding motility, and proteins secreted via T9SS. In this study, we develop such a computational tool, Type 9 secretion system and Gliding motility Prediction (T9GPred). To build this tool, we manually curated published experimental evidence and identified mandatory components for T9SS and gliding motility prediction. We also compiled experimentally characterized proteins secreted via T9SS and determined the presence of three unique types of C-terminal domain signals, and these insights were leveraged to predict proteins secreted via T9SS. Notably, using recently published experimental evidence, we show that T9GPred has high predictive power. Thus, we used T9GPred to predict the presence of T9SS, gliding motility, and associated secreted proteins across 693 completely sequenced Bacteroidetes strains. T9GPred predicted 402 strains to have T9SS, of which 327 strains are also predicted to exhibit gliding motility. Further, T9GPred also predicted putative secreted proteins for the 402 strains. In a nutshell, T9GPred is a novel computational tool for systems-level prediction of T9SS and streamlining future experimentation. The source code of the computational tool is available in our GitHub repository: https://github.com/asamallab/T9GPred. The tool and its predicted results are compiled in a web server available at: https://cb.imsc.res.in/t9gpred/.

4.
ACS Omega ; 8(9): 8827-8845, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910986

RESUMO

Compilation, curation, digitization, and exploration of the phytochemical space of Indian medicinal plants can expedite ongoing efforts toward natural product and traditional knowledge based drug discovery. To this end, we present IMPPAT 2.0, an enhanced and expanded database compiling manually curated information on 4010 Indian medicinal plants, 17,967 phytochemicals, and 1095 therapeutic uses. Notably, IMPPAT 2.0 compiles associations at the level of plant parts and provides a FAIR-compliant nonredundant in silico stereo-aware library of 17,967 phytochemicals from Indian medicinal plants. The phytochemical library has been annotated with several useful properties to enable easier exploration of the chemical space. We have also filtered a subset of 1335 drug-like phytochemicals of which majority have no similarity to existing approved drugs. Using cheminformatics, we have characterized the molecular complexity and molecular scaffold based structural diversity of the phytochemical space of Indian medicinal plants and performed a comparative analysis with other chemical libraries. Altogether, IMPPAT 2.0 is a manually curated extensive phytochemical atlas of Indian medicinal plants that is accessible at https://cb.imsc.res.in/imppat/.

5.
Sci Total Environ ; 873: 162263, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801331

RESUMO

Androgen mimicking environmental chemicals can bind to Androgen receptor (AR) and can cause severe effects on the reproductive health of males. Predicting such endocrine disrupting chemicals (EDCs) in the human exposome is vital for improving current chemical regulations. To this end, QSAR models have been developed to predict androgen binders. However, a continuous structure-activity relationship (SAR) wherein chemicals with similar structure have similar activity does not always hold. Activity landscape analysis can help map the structure-activity landscape and identify unique features such as activity cliffs. Here we performed a systematic investigation of the chemical diversity along with the global and local structure-activity landscape of a curated list of 144 AR binding chemicals. Specifically, we clustered the AR binding chemicals and visualized the associated chemical space. Thereafter, consensus diversity plot was used to assess the global diversity of the chemical space. Subsequently, the structure-activity landscape was investigated using SAS maps which capture the activity difference and structural similarity among the AR binders. This analysis led to a subset of 41 AR binding chemicals forming 86 activity cliffs, of which 14 are activity cliff generators. Additionally, SALI scores were computed for all pairs of AR binding chemicals and the SALI heatmap was also used to evaluate the activity cliffs identified using SAS map. Finally, we provide a classification of the 86 activity cliffs into six categories using structural information of chemicals at different levels. Overall, this investigation reveals the heterogeneous nature of the structure-activity landscape of AR binding chemicals and provides insights which will be crucial in preventing false prediction of chemicals as androgen binders and developing predictive computational toxicity models in the future.


Assuntos
Androgênios , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade , Relação Quantitativa Estrutura-Atividade
6.
ACS Omega ; 8(3): 3102-3113, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713723

RESUMO

Medicinal fungi, including mushrooms, have well-documented therapeutic uses. In this study, we perform a cheminformatics-based investigation of the scaffold and structural diversity of the secondary metabolite space of medicinal fungi and, moreover, perform a detailed comparison with approved drugs, other natural product libraries, and semi-synthetic libraries. We find that the secondary metabolite space of medicinal fungi has similar or higher scaffold diversity in comparison to other natural product libraries analyzed here. Notably, 94% of the scaffolds in the secondary metabolite space of medicinal fungi are not present in the approved drugs. Further, we find that the secondary metabolites, on the one hand, are structurally far from the approved drugs, while, on the other hand, they are close in terms of molecular properties to the approved drugs. Lastly, chemical space visualization using dimensionality reduction methods showed that the secondary metabolite space has minimal overlap with the approved drug space. In a nutshell, our results underscore that the secondary metabolite space of medicinal fungi is a valuable resource for identifying potential lead molecules for natural product-based drug discovery.

7.
Mol Divers ; 27(5): 2169-2184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36331784

RESUMO

The World Health Organization (WHO) recently declared the monkeypox outbreak 'A public health emergency of international concern'. The monkeypox virus belongs to the same Orthopoxvirus genus as smallpox. Although smallpox drugs are recommended for use against monkeypox, monkeypox-specific drugs are not yet available. Drug repurposing is a viable and efficient approach in the face of such an outbreak. Therefore, we present a computational drug repurposing study to identify the existing approved drugs which can be potential inhibitors of vital monkeypox virus proteins, thymidylate kinase and D9 decapping enzyme. The target protein structures of the monkeypox virus were modelled using the corresponding protein structures in the vaccinia virus. We identified four potential inhibitors namely, Tipranavir, Cefiderocol, Doxorubicin, and Dolutegravir as candidates for repurposing against monkeypox virus from a library of US FDA approved antiviral and antibiotic drugs using molecular docking and molecular dynamics simulations. The main goal of this in silico study is to identify potential inhibitors against monkeypox virus proteins that can be further experimentally validated for the discovery of novel therapeutic agents against monkeypox disease.


Assuntos
Mpox , Varíola , Humanos , Monkeypox virus , Simulação de Acoplamento Molecular , Antibacterianos
8.
RSC Adv ; 12(10): 6234-6247, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424542

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes a highly infectious disease with reported mortality in the range 2.8% to 47%. The replication and transcription of the SFTSV genome is performed by L polymerase, which has both an RNA dependent RNA polymerase domain and an N-terminal endonuclease (endoN) domain. Due to its crucial role in the cap-snatching mechanism required for initiation of viral RNA transcription, the endoN domain is an ideal antiviral drug target. In this virtual screening study for the identification of potential inhibitors of the endoN domain of SFTSV L polymerase, we have used molecular docking and molecular dynamics (MD) simulation to explore the natural product space of 14 011 phytochemicals from Indian medicinal plants. After generating a heterogeneous ensemble of endoN domain structures reflecting conformational diversity of the corresponding active site using MD simulations, ensemble docking of the phytochemicals was performed against the endoN domain structures. Apart from the ligand binding energy from docking, our virtual screening workflow imposes additional filters such as drug-likeness, non-covalent interactions with key active site residues, toxicity and chemical similarity with other hits, to identify top 5 potential phytochemical inhibitors of endoN domain of SFTSV L polymerase. Further, the stability of the protein-ligand docked complexes for the top 5 potential inhibitors was analyzed using MD simulations. The potential phytochemical inhibitors, predicted in this study using contemporary computational methods, are expected to serve as lead molecules in future experimental studies towards development of antiviral drugs against SFTSV.

9.
Mol Divers ; 26(1): 429-442, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34117992

RESUMO

The SARS-CoV-2 helicase Nsp13 is a promising target for developing anti-COVID drugs. In the present study, we have identified potential natural product inhibitors of SARS-CoV-2 Nsp13 targeting the ATP-binding site using molecular docking and molecular dynamics (MD) simulations. MD simulation of the prepared crystal structure of SARS-CoV-2 Nsp13 was performed to generate an ensemble of structures of helicase Nsp13 capturing the conformational diversity of the ATP-binding site. A natural product library of more than 14,000 phytochemicals from Indian medicinal plants was used to perform virtual screening against the ensemble of Nsp13 structures. Subsequently, a two-stage filter, first based on protein-ligand docking binding energy value and second based on protein residues in the ligand-binding site and non-covalent interactions between the protein residues and the ligand in the best-docked pose, was used to identify 368 phytochemicals as potential inhibitors of SARS-CoV-2 helicase Nsp13. MD simulations of the top inhibitors complexed with protein were performed to confirm stable binding, and to compute MM-PBSA based binding energy. From among the 368 potential phytochemical inhibitors, the top identified potential inhibitors of SARS-CoV-2 helicase Nsp13 namely, Picrasidine M, (+)-Epiexcelsin, Isorhoeadine, Euphorbetin and Picrasidine N, can be taken up initially for experimental studies.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia
10.
Nat Commun ; 12(1): 3392, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099666

RESUMO

Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells' susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection.


Assuntos
Efeito Espectador/genética , Fator de Transcrição E2F1/metabolismo , MicroRNAs/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Efeito Espectador/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fator de Transcrição E2F1/genética , Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/metabolismo , Proteína HMGB1/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Listeria monocytogenes/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Shigella flexneri/imunologia , Suínos
11.
RSC Adv ; 11(5): 2596-2607, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424258

RESUMO

Fungi are a rich source of secondary metabolites which constitutes a valuable and diverse chemical space of natural products. Medicinal fungi have been used in traditional medicine to treat human ailments for centuries. To date, there is no devoted resource on secondary metabolites and therapeutic uses of medicinal fungi. Such a dedicated resource compiling dispersed information on medicinal fungi across published literature will facilitate ongoing efforts towards natural product based drug discovery. Here, we present the first comprehensive manually curated database on Medicinal Fungi Secondary metabolites And Therapeutics (MeFSAT) that compiles information on 184 medicinal fungi, 1830 secondary metabolites and 149 therapeutics uses. Importantly, MeFSAT contains a non-redundant in silico natural product library of 1830 secondary metabolites along with information on their chemical structures, computed physicochemical properties, drug-likeness properties, predicted ADMET properties, molecular descriptors and predicted human target proteins. By comparing the physicochemical properties of secondary metabolites in MeFSAT with other small molecules collections, we find that fungal secondary metabolites have high stereochemical complexity and shape complexity similar to other natural product libraries. Based on multiple scoring schemes, we have filtered a subset of 228 drug-like secondary metabolites in MeFSAT database. By constructing and analyzing chemical similarity networks, we show that the chemical space of secondary metabolites in MeFSAT is highly diverse. The compiled information in MeFSAT database is openly accessible at: https://cb.imsc.res.in/mefsat/.

12.
Molecules ; 25(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842606

RESUMO

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Catepsina L/química , Compostos Fitoquímicos/química , Inibidores de Proteases/química , Receptores Virais/química , Serina Endopeptidases/química , Sequência de Aminoácidos , Antivirais/isolamento & purificação , Antivirais/farmacologia , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Índia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Monossacarídeos/farmacologia , Pandemias , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Quinazolinas/química , Quinazolinas/isolamento & purificação , Quinazolinas/farmacologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Termodinâmica , Internalização do Vírus/efeitos dos fármacos
13.
Sci Total Environ ; 692: 281-296, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349169

RESUMO

Human well-being can be affected by exposure to several chemicals in the environment. One such group is endocrine disrupting chemicals (EDCs) that can perturb the hormonal homeostasis leading to adverse health effects. In this work, we have developed a detailed workflow to identify EDCs with supporting evidence of endocrine disruption in published experiments in humans or rodents. Thereafter, this workflow was used to manually evaluate more than 16,000 published research articles and identify 686 potential EDCs with published evidence in humans or rodents. Importantly, we have compiled the observed adverse effects or endocrine-specific perturbations along with the dosage information for the potential EDCs from their supporting published experiments. Subsequently, the potential EDCs were classified based on the type of supporting evidence, their environmental source and their chemical properties. Additional compiled information for potential EDCs include their chemical structure, physicochemical properties, predicted ADMET properties and target genes. In order to enable future research based on this compiled information on potential EDCs, we have built an online knowledgebase, Database of Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT), accessible at: https://cb.imsc.res.in/deduct/. After building this comprehensive resource, we have performed a network-centric analysis of the chemical space and the associated biological space of target genes of EDCs. Specifically, we have constructed two networks of EDCs using our resource based on similarity of chemical structures or target genes. Ensuing analysis revealed a lack of correlation between chemical structure and target genes of EDCs. Though our detailed results highlight potential challenges in developing predictive models for EDCs, the compiled information in our resource will undoubtedly enable future research in the field, especially, those focussed towards mechanistic understanding of the systems-level perturbations caused by EDCs.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Bases de Conhecimento , Animais , Humanos , Roedores
14.
Sci Rep ; 8(1): 6617, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700415

RESUMO

Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the secretome is significantly more antigenic than cell membrane proteins or the complete proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection and with available structures, were found to be structurally similar to known drug target proteins in other organisms, and were able to dock in silico with the respective drug.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Aspergillus/metabolismo , Biologia Computacional , Infecções Oportunistas/microbiologia , Proteoma , Proteômica , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Antígenos de Fungos/metabolismo , Aspergillus/genética , Aspergillus/imunologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Proteômica/métodos
15.
Sci Rep ; 8(1): 4329, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531263

RESUMO

Phytochemicals of medicinal plants encompass a diverse chemical space for drug discovery. India is rich with a flora of indigenous medicinal plants that have been used for centuries in traditional Indian medicine to treat human maladies. A comprehensive online database on the phytochemistry of Indian medicinal plants will enable computational approaches towards natural product based drug discovery. In this direction, we present, IMPPAT, a manually curated database of 1742 Indian Medicinal Plants, 9596 Phytochemicals, And 1124 Therapeutic uses spanning 27074 plant-phytochemical associations and 11514 plant-therapeutic associations. Notably, the curation effort led to a non-redundant in silico library of 9596 phytochemicals with standard chemical identifiers and structure information. Using cheminformatic approaches, we have computed the physicochemical, ADMET (absorption, distribution, metabolism, excretion, toxicity) and drug-likeliness properties of the IMPPAT phytochemicals. We show that the stereochemical complexity and shape complexity of IMPPAT phytochemicals differ from libraries of commercial compounds or diversity-oriented synthesis compounds while being similar to other libraries of natural products. Within IMPPAT, we have filtered a subset of 960 potential druggable phytochemicals, of which majority have no significant similarity to existing FDA approved drugs, and thus, rendering them as good candidates for prospective drugs. IMPPAT database is openly accessible at: https://cb.imsc.res.in/imppat .


Assuntos
Descoberta de Drogas , Compostos Fitoquímicos/química , Plantas Medicinais/química , Bases de Dados Factuais , Descoberta de Drogas/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Índia , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Fitoterapia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Biosystems ; 147: 1-10, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27287878

RESUMO

A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with metabolic reactions, the constraint-based modelling approach, flux balance analysis (FBA), has proved to be a vital alternative to investigate the capabilities of reconstructed metabolic networks. In parallel, advent of high-throughput technologies has led to the generation of massive amounts of omics data on transcriptional regulation comprising mRNA transcript levels and genome-wide binding profile of transcriptional regulators. A frontier area in metabolic systems biology has been the development of methods to integrate the available transcriptional regulatory information into constraint-based models of reconstructed metabolic networks in order to increase the predictive capabilities of computational models and understand the regulation of cellular metabolism. Here, we review the existing methods to integrate transcriptional regulatory information into constraint-based models of metabolic networks.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Redes e Vias Metabólicas/genética , Biologia de Sistemas/métodos , Animais , Simulação por Computador , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...