Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Front Nutr ; 11: 1388492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812942

RESUMO

Introduction: This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods: Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results: The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion: Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.

2.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38591866

RESUMO

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Assuntos
Acetilcisteína , Materiais Biocompatíveis , Teste de Materiais , Nanopartículas , Agulhas , Tamanho da Partícula , Impressão Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacologia , Rivastigmina/química , Rivastigmina/farmacologia , Rivastigmina/administração & dosagem , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Oncol ; 64(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426621

RESUMO

Tumor malignant cells are characterized by dysregulation of mitochondrial bioenergetics due to the 'Warburg effect'. In the present study, this metabolic imbalance was explored as a potential target for novel cancer chemotherapy. Imatinib (IM) downregulates the expression levels of SCΟ2 and FRATAXIN (FXN) genes involved in the heme­dependent cytochrome c oxidase biosynthesis and assembly pathway in human erythroleukemic IM­sensitive K­562 chronic myeloid leukemia cells (K­562). In the present study, it was investigated whether the treatment of cancer cells with IM (an inhibitor of oxidative phosphorylation) separately, or together with dichloroacetate (DCA) (an inhibitor of glycolysis), can inhibit cell proliferation or cause death. Human K­562 and IM­chemoresistant K­562 chronic myeloid leukemia cells (K­562R), as well as human colorectal carcinoma cells HCT­116 (+/+p53) and (­/­p53, with double TP53 knock-in disruptions), were employed. Treatments of these cells with either IM (1 or 2 µM) and/or DCA (4 mΜ) were also assessed for the levels of several process biomarkers including SCO2, FXN, lactate dehydrogenase A, glyceraldehyde­3­phosphate dehydrogenase, pyruvate kinase M2, hypoxia inducing factor­1a, heme oxygenase­1, NF­κB, stem cell factor and vascular endothelial growth factor via western blot analysis. Computational network biology models were also applied to reveal the connections between the ten proteins examined. Combination treatment of IM with DCA caused extensive cell death (>75%) in K­562 and considerable (>45%) in HCT­116 (+/+p53) cultures, but less in K­562R and HCT­116 (­/­p53), with the latter deficient in full length p53 protein. Such treatment, markedly reduced reactive oxygen species levels, as measured by flow­cytometry, in K­562 cells and affected the oxidative phosphorylation and glycolytic biomarkers in all lines examined. These findings indicated, that targeting of cancer mitochondrial bioenergetics with such a combination treatment was very effective, although chemoresistance to IM in leukemia and the absence of a full length p53 in colorectal cells affected its impact.


Assuntos
Neoplasias Colorretais , Leucemia Eritroblástica Aguda , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteína Supressora de Tumor p53/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose , Linhagem Celular Tumoral , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metabolismo Energético , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biomarcadores/metabolismo , Células K562 , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células
4.
Eur Arch Otorhinolaryngol ; 281(7): 3587-3599, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334783

RESUMO

PURPOSE: Chronic rhinosinusitis (CRS) is a prevalent chronic disease observed on a global scale. The utilization of endoscopic sinus surgery (ESS) has gained significant recognition as an effective intervention for individuals with CRS and nasal polyps who have not responded to conventional treatments. The need (or not) for revision surgery frequently relies on the promotion of optimal wound healing. The impact of platelet-rich plasma (PRP) on tissue healing has been extensively examined in various surgical fields. METHODS: The present prospective study involved 30 patients suffering with nasal polyposis who underwent endoscopic sinus surgery. 15 patients were assigned to the PRP group, and 15 patients to the control group. The clinical follow-up of the patients took place at specific intervals, at weeks 1, 2, 3, 4, 8, and 12 after the surgical procedure. The evaluator identified the existence of adhesions, crusting, bleeding, granulation and infection using a visual analogue scale score. The patients also completed the SNOT 22 questionnaire prior to surgery and at each postoperative visit. RESULTS: The present study observed a lower incidence of adhesion, infection, hemorrhage and granulation in the PRP group. Furthermore, a statistically significant difference was detected between the groups. CONCLUSION: Based on the findings of the present investigation, it seems that platelet-rich plasma (PRP) is beneficial on wound healing during the early stages following the surgical procedure. The technique is characterized by its limited invasiveness, which contributes to its low risk profile and the achievement of clinically good outcomes.


Assuntos
Endoscopia , Pólipos Nasais , Plasma Rico em Plaquetas , Rinite , Sinusite , Cicatrização , Humanos , Feminino , Masculino , Cicatrização/fisiologia , Pessoa de Meia-Idade , Sinusite/cirurgia , Adulto , Rinite/cirurgia , Rinite/terapia , Endoscopia/métodos , Estudos Prospectivos , Doença Crônica , Pólipos Nasais/cirurgia , Resultado do Tratamento , Mucosa Nasal
5.
Cureus ; 15(9): e45482, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37859926

RESUMO

INTRODUCTION: Cancer stem cells (CSCs) are incriminated for initiating the process of carcinogenesis either de novo or through the transformation of oral potentially malignant disorders (OPMDs) to oral squamous cell carcinoma (OSCC). The aim of this study was to detect the expression of embryonic-type CSC markers OCT3/4 and SOX2 in OSCCs and oral leukoplakias (OLs), the most common of OPMDs. MATERIALS AND METHODS: The study type is experimental, and the study design is characterized as semiquantitative research, which belongs to the branch of experimental research. The experiment was conducted in the Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece. This study focuses on the semiquantitative immunohistochemical (IHC) pattern of expression of CSCs protein-biomarkers SOX2 and OCT3/4, in paraffin embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to five cases of normal oral mucosa in both terms of cells' stain positivity and intensity. Statistical analysis was performed through SPSS 2017 Pearson Chi-square and the significance level was set at 0.05 (p=0.05). The expression of the respective genes of SOX2 and OCT3/4 was studied through quantitative polymerase chain reaction (qPCR), in paraffin-embedded samples of 12 cases of OLs with mild/non dysplasia and 19 cases moderately/poorly differentiated OSCCs(n=19) and five normal mucosa using the Independent Paired T-test. RESULTS: The genes SOX2 and Oct3/4 were expressed in all examined cases although no statistically significant correlations among normal, OL and OSCC, were established. A nuclear/membrane staining of OCT3/4 was noticed only in three out of 21 OSCCs but in none of OLs or normal cases (without statistical significance). A characteristic nuclear staining of SOX2 was noticed in the majority of the samples, mostly in the basal and parabasal layers of the epithelium. SOX2 was significantly detected in the OSCCs group (strong positivity in 17/21) than in the OL group (30 cases, mostly mildly stained) (p-value=0.007), and the normal oral epithelium (mild stained, p=0.065). Furthermore, SOX2 was overexpressed in well differentiated OSCCs group (5/OSCCs, strongly stained) rather than in mildly dysplastic and non-dysplastic OLs samples (14/OLs, mildly stained) (p-value =0.035). CONCLUSION: The characteristic expression of SOX2 but not of OCT3/4 in OLs' and OSCCs' lesions suggests the presence of neoplastic cells with certain CSC characteristics whose implication in the early stages of oral tumorigenesis could be further evaluated. The clinical use of SOX2, as prognostic factor, requires further experimental evaluation in larger number of samples.

6.
iScience ; 26(9): 107591, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664638

RESUMO

Personalized prediction is ideal in chronic lymphocytic leukemia (CLL). Although refined models have been developed, stratifying patients in risk groups, it is required to accommodate time-dependent information of patients, to address the clinical heterogeneity observed within these groups. In this direction, this study proposes a personalized stepwise dynamic predictive algorithm (PSDPA) for the time-to-first-treatment of the individual patient. The PSDPA introduces a personalized Score, reflecting the evolution in the patient's follow-up, employed to develop a reference pool of patients. Score evolution's similarity is used to predict, at a selected time point, the time-to-first-treatment for a new patient. Additional patient's biological information may be utilized. The algorithm was applied to 20 CLL patients, indicating that stricter assessment criteria for the Score evolution's similarity, and biological similarity exploitation, may improve prediction. The PSDPA capitalizes on both the follow-up and the biological background of the individual patient, dynamically promoting personalized prediction in CLL.

7.
ACS Biomater Sci Eng ; 9(8): 5072-5083, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37528336

RESUMO

In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device. Light microscopy was used to quality control the printability of the designs, confirming that the actual dimensions are in agreement with the digital design. Non-destructive volume imaging by means of microfocus computed tomography was employed for dimensional and defect characterization of the DLP-printed devices, demonstrating the actual volumes of the reservoirs and the malformations that occurred during printing. The penetration test and finite element analysis showed that the maximum stress experienced by the needles during the insertion process (10 N) was below their ultimate compressive strength (240-310 N). Permeation studies showed the increased permeability of three model drugs when delivered with the MN devices. Size-exclusion chromatography validated the stability of all the actives throughout the permeability tests. The safety of these printed devices for buccal administration was confirmed by histological evaluation and cell viability studies using the TR146 cell line, which indicated no toxic effects.


Assuntos
Impressão Tridimensional , Luz , Agulhas , Humanos , Linhagem Celular , Sobrevivência Celular
8.
Cureus ; 15(5): e38807, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37303447

RESUMO

Objectives Cancer stem cells (CSCs) are responsible for initiating the process of carcinogenesis de novo, as well as through the transformation of oral potential malignant disorders (OPMDs) to oral squamous cell carcinoma (OSCC). The aim of our study was to detect the expression of stemness-type CSC marker CD147 in oral leukoplakias (OLs), the most common OPMD, and OSCCs as well. Materials and methods This study focuses on the semiquantitative immunohistochemical pattern of the expression of the CSC protein biomarker CD147 in paraffin-embedded samples of 20 OSCCs of different grades of differentiation and 30 cases of OLs without or with different grades of dysplasia, compared to the normal oral epithelium in terms of cells' stain positivity. Statistical analysis was performed through Statistical Package for Social Sciences (SPSS) version 25.0 (IBM SPSS Statistics, Armonk, NY) with Pearson chi-square test, and the significance level was set at 0.05 (p=0.05). In addition, the study clarified the expression of the respective gene of CD147 through quantitative polymerase chain (qPCR), in paraffin-embedded samples of the two extreme graduations: OLs of mildly dysplastic or non-dysplastic cases (n=10 cases) and OSCCs of moderately/poorly differentiated cases (n=17). Statistical analysis was then performed through SPSS version 25.0 with an independent paired t-test, and the significance level was set at 0.05 (p=0.05). Results The gene CD147 was expressed in all cases, although no statistically significant correlations were established. Regarding its protein products, the characteristic membranous staining of CD147 was noticed in the majority of the samples, mostly in the basal and parabasal layers of the epithelium. CD147 was upregulated significantly in the moderately and severely dysplastic OLs than in the mildly dysplastic and non-dysplastic OLs (p=0.008). Also, CD147 was upregulated significantly in the mildly dysplastic and non-dysplastic OLs than in the normal oral epithelium (p=0.012). Discussion The characteristic expression of CD147 in OLs and OSCCs' lesions suggests the presence of stemlike cancer cells, illustrating an underlying effect on the early stages of oral dysplasia, in the OL stage. The clinical application of CD147 as prognostic factor requires the experimental evaluation in larger number of samples. Conclusion Stem cells play an important role in the process of carcinogenesis. A major goal in cancer research is the identification of specific biomarkers for the detection of cancer stem cells. CD147 is considered as an innovative stem cell marker. Our findings in oral mucosal potentially malignant disorders showed that CD147 is expressed more intensely in parallel with the progression of the grade of dysplasia in OL. On the other hand, in oral squamous cell carcinoma, CD147 expression remains stable regardless of the degree of differentiation.

9.
Biology (Basel) ; 12(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37237520

RESUMO

An ever-growing amount of accumulated data has materialized in several scientific fields, due to recent technological progress. New challenges emerge in exploiting these data and utilizing the valuable available information. Causal models are a powerful tool that can be employed towards this aim, by unveiling the structure of causal relationships between different variables. The causal structure may avail experts to better understand relationships, or even uncover new knowledge. Based on 963 patients with coronary artery disease, the robustness of the causal structure of single nucleotide polymorphisms was assessed, taking into account the value of the Syntax Score, an index that evaluates the complexity of the disease. The causal structure was investigated, both locally and globally, under different levels of intervention, reflected in the number of patients that were randomly excluded from the original datasets corresponding to two categories of the Syntax Score, zero and positive. It is shown that the causal structure of single nucleotide polymorphisms was more robust under milder interventions, whereas in the case of stronger interventions, the impact increased. The local causal structure around the Syntax Score was studied in the case of a positive Syntax Score, and it was found to be resilient, even when the intervention was strong. Consequently, employing causal models in this context may increase the understanding of the biological aspects of coronary artery disease.

10.
Int J Pharm ; 640: 123004, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142138

RESUMO

Continuing what previous studies had also intended, the present study aims to shed light on some unanswered questions concerning a recently introduced class of high drug loading (HD) amorphous solid dispersions (ASDs), based on the in-situ thermal crosslinking of poly (acrylic acid) (PAA) and poly (vinyl alcohols) (PVA). Initially, the effect of supersaturated dissolution conditions on the kinetic solubility profiles of the crosslinked HD ASDSs having indomethacin (IND) as a model drug, was determined. Subsequently, the safety profile of these new crosslinked formulations was determined for the first time by evaluating their cytotoxic effect on human intestinal epithelia cell line (Caco-2), while their ex-vivo intestinal permeability was also studied via the non-everted gut sac method. According to the obtained findings, the in-situ thermal crosslinked IND HD ASDs present similar kinetic solubility profiles when the dissolution studies are conducted with a steady sink index value, regardless of the different dissolution medium's volume and the total dose of the API. Additionally, the results showed a concentration- and time- dependent cytotoxicity profile for all formulations, while the neat crosslinked PAA/PVA matrices did not elicit cytotoxicity during the first 24 h, even at the highest examined concentration. Finally, the newly proposed HD ASD system, resulted in a remarkably increased ex-vivo intestinal permeability of IND.


Assuntos
Células CACO-2 , Humanos , Cristalização , Solubilidade , Composição de Medicamentos , Liberação Controlada de Fármacos
11.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110650

RESUMO

Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 µΜ, respectively, compared to ibuprofen (12.7 µΜ) and naproxen (40.10 µΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.


Assuntos
Antineoplásicos , Tiadiazóis , Humanos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Tiadiazóis/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Edema/tratamento farmacológico
12.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678628

RESUMO

Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by 10-50 fold. The most sensitive bacterium was En. Cloacae, while E. coli was the most resistant one, followed by M. flavus. The most active compound appeared to be compound 8 with MIC at 0.004-0.03 mg/mL and MBC at 0.008-0.06 mg/mL. The antifungal activity of tested compounds was good to excellent with MIC in the range of 0.004-0.06 mg/mL, with compound 15 being the most potent. T. viride was the most sensitive fungal, while A. fumigatus was the most resistant one. Docking studies revealed that the inhibition of E. coli MurB is probably responsible for their antibacterial activity, while 14a-lanosterol demethylase of CYP51Ca is involved in the mechanism of antifungal activity. Furthermore, drug-likeness and ADMET profile prediction were performed. Finally, the cytotoxicity studies were performed for the most active compounds using MTT assay against normal MRC5 cells.

13.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678793

RESUMO

Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.

14.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678915

RESUMO

Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.

15.
Int J Pharm ; 632: 122569, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592893

RESUMO

Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions.


Assuntos
Octreotida , Impressão Tridimensional , Humanos , Células CACO-2 , Composição de Medicamentos/métodos , Formas de Dosagem , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos
16.
Chem Commun (Camb) ; 59(11): 1505-1508, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36655875

RESUMO

The generation of chemobrionic architectures through slow injection of aqueous silicate solution in gaseous TiCl4 is demonstrated. The tubes were characterized by XRD, SEM and wet chemistry control experiments, and their mechanism of formation was unraveled. These structures serve as laboratory models for calthemites or soda straws.

17.
Pharmaceutics ; 14(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015263

RESUMO

In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.

18.
J Chromatogr A ; 1680: 463432, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36041251

RESUMO

In this study, an "all-in-one" microextraction device was designed and fabricated for the extraction of doxorubicin and its two metabolites from rat plasma prior to their determination by high performance liquid chromatography coupled to fluorescence detector. A sol-gel-based sorbent was synthesized in situ and incorporated within two conjoined porous polypropylene tubes together with a cylindrical magnetic bar in order to avoid the need of an external stirring bar. Among other sorbents investigated, the moderately polar sol-gel poly(tetrahydrofuran) was found to be advantageous due to its high affinity toward the target analytes. Systematic investigation of the critical parameters affecting the adsorption and the desorption step was carried out. Due to the "built-in" filtration mechanism of the porous microextraction capsules, the isolation of the analytes was performed directly in the plasma matrix without any previous sample pretreatment (i.e., protein precipitation, centrifugation, etc.). The proposed method was validated in terms of linearity, accuracy, precision, specificity, sensitivity, and stability according to the FDA guidelines. The limits of detection ranged between 1 - 2 ng mL-1 while the lower limits of quantitation of the analytes were calculated as 10 ng mL-1. The accuracy (% relative error) was found within -9.7 - 15.3% under both intra- and inter-day conditions. The precision was better than 13.4% in all cases. ComplexGAPI index was employed to present the green attributes of the developed protocol from the preparation of the microextraction device to the final determination of the analytes. Finally, the applicability of the fabricated stand-alone extraction device was demonstrated in the analysis of the target analytes in rat plasma after intravenous administration of doxorubicin in order to assess its pharmacokinetic profile.


Assuntos
Doxorrubicina , Microextração em Fase Líquida , Adsorção , Animais , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Microextração em Fase Líquida/métodos , Ratos , Microextração em Fase Sólida/métodos
19.
Int J Mol Sci ; 23(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887353

RESUMO

Broad-spectrum antiviral agents that are effective against many viruses are difficult to develop, as the key molecules, as well as the biochemical pathways by which they cause infection, differ largely from one virus to another. This was more strongly highlighted by the COVID-19 pandemic, which found health systems all over the world largely unprepared and proved that the existing armamentarium of antiviral agents is not sufficient to address viral threats with pandemic potential. The clinical protocols for the treatment of COVID-19 are currently based on the use of inhibitors of the inflammatory cascade (dexamethasone, baricitinib), or inhibitors of the cytopathic effect of the virus (monoclonal antibodies, molnupiravir or nirmatrelvir/ritonavir), using different agents. There is a critical need for an expanded armamentarium of orally bioavailable small-molecular medicinal agents, including those that possess dual antiviral and anti-inflammatory (AAI) activity that would be readily available for the early treatment of mild to moderate COVID-19 in high-risk patients. A multidisciplinary approach that involves the use of in silico screening tools to identify potential drug targets of an emerging pathogen, as well as in vitro and in vivo models for the determination of a candidate drug's efficacy and safety, are necessary for the rapid and successful development of antiviral agents with potentially dual AAI activity. Characterization of candidate AAI molecules with physiologically based pharmacokinetics (PBPK) modeling would provide critical data for the accurate dosing of new therapeutic agents against COVID-19. This review analyzes the dual mechanisms of AAI agents with potential anti-SARS-CoV-2 activity and discusses the principles of PBPK modeling as a conceptual guide to develop new pharmacological modalities for the treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
20.
Pharmacogenet Genomics ; 32(6): 235-241, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852914

RESUMO

OBJECTIVES: This study explores the potential of gene polymorphisms in the canonical and noncanonical NF-kB signaling pathway as a prediction biomarker of anti-tumor necrosis factor (TNF)α response in Crohn's patients. MATERIALS AND METHODS: A total of 109 Greek patients with Crohn's disease (CD) were recruited, and the genotype of TLR2 rs3804099, LTA rs909253, TLR4 rs5030728, and MAP3K14/NIK rs7222094 single nucleotide polymorphisms was investigated for association with response to anti-TNFα therapy. Patient's response to therapy was based on the Crohn's Disease Activity Index, depicting the maximum response within 24 months after initiation of treatment. RESULTS: Seventy-three patients (66.7%) were classified as responders while 36 as nonresponders (33.3%). Comparing allelic frequencies between responders and nonresponders, the presence of TLR2 rs3804099 T allele was associated with nonresponse (P = 0.003), even after stratification by anti-TNFα drugs (infliximab: P = 0.032, adalimumab: P = 0.026). No other association was identified for the rest of the polymorphisms under study. Haplotype analysis further enhanced the association of rs3804099 T allele with loss of response, even though the results were NS (P = 0.073). CONCLUSION: Our results suggest that polymorphisms in the canonical NF-kB pathway genes could potentially act as a predictive biomarker of anti-TNFα response in CD.


Assuntos
Doença de Crohn , Adalimumab/genética , Adalimumab/uso terapêutico , Biomarcadores , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/patologia , Humanos , Infliximab/genética , Infliximab/uso terapêutico , NF-kappa B/genética , NF-kappa B/uso terapêutico , Necrose/tratamento farmacológico , Testes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...