Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(7): 1823-1837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727985

RESUMO

Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1ß, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.


Assuntos
Biomarcadores , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Aldeído Pirúvico , Aldeído Pirúvico/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Biomarcadores/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Glicólise/efeitos dos fármacos , Interleucina-1beta/metabolismo , Inflamação/metabolismo , Inflamação/induzido quimicamente , Proteína Glial Fibrilar Ácida/metabolismo , Lactoilglutationa Liase/metabolismo , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos
2.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058025

RESUMO

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/metabolismo , Barreira Hematoencefálica/metabolismo , Astrócitos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
3.
Mol Neurobiol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980327

RESUMO

Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1ß synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG. Proposed neuroprotection role of metformin in acute hippocampal slices against impairment in glutamatergic system induced in a model of methylglyoxal glycotoxicity. Metformin reversed methylglyoxal (MG)-induced neuroinflammation by reducing pro-inflammatory IL-1ß synthesis and secretion and RAGE protein expression. Metformin did not alter the effect of MG on S100B secretion (1). Both MG and metformin also influenced astrocyte function in hippocampal slices. Metformin did not reverse the elevation in GLO1 activity induced by glycotoxicity; however, it abrogated the high GSH level and the expression of the co-factor of GLO1 (2). Both treatments per se changed bioenergetic metabolism and increased glucose uptake, extracellular lactate content, and pyruvate kinase (PK) activity. The increment in glucose uptake and lactate levels ceased during the co-incubation of MG with metformin. Metformin reversed the elevation of hexokinase activity by MG (3). We suggest a new role of metformin in the glutamate system, whereby it protects the hippocampus against the derangements of the glutamatergic system induced by MG, possibly by phosphorylation via PKC ζ (4). The neuroprotective action of metformin may be mediated by the phosphorylation of specific amino acid residues (Lysine) of the glutamate transporters (GLAST and GLT-1), since metformin activated the PKC ζ signaling and promoted cascades of phosphorylation in p38 MAPK and Akt proteins. The transporter protein phosphorylation prevented the Lys-glycation and the impairment of glutamate uptake induced by MG (5).

4.
Int J Dev Neurosci ; 83(7): 600-614, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477051

RESUMO

Neonates have an immature immune system, which increases their vulnerability to infectious agents and inflammatory insults. The administration of the immunostimulatory agent lipopolysaccharide (LPS) has been shown to induce the expression of pro-inflammatory cytokines and cause behavior alterations in rodents at different ages. However, the effects of LPS administration during the neonatal period and its consequences during immune system maturation remain to be elucidated. We showed here that a single intraperitoneal administration of LPS in rats on postnatal day (PND) 7 caused early and variable alterations in TNF-α, S100B and GFAP levels in the cerebral cortex, CSF and serum of the animals, indicating long-term induction of neuroinflammation and astroglial reactivity. However, on PND 21, only GFAP levels were increased by LPS. Additionally, LPS induced oxidative stress and altered energy metabolism enzymes in the cerebral cortex on PND 21, and caused neurodevelopment impairment over time. These data suggest that neuroinflammation induction during the neonatal period induces glial reactivity, oxidative stress and bioenergetic disruption that may lead to neurodevelopment impairment and cognitive deficit in adult life.


Assuntos
Antioxidantes , Lipopolissacarídeos , Animais , Ratos , Antioxidantes/farmacologia , Animais Recém-Nascidos , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Córtex Cerebral , Metabolismo Energético
5.
Neurochem Res ; 48(11): 3447-3456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464227

RESUMO

Evidence indicates that transcranial direct current stimulation (tDCS) provides therapeutic benefits in different situations, such as epilepsy, depression, inflammatory and neuropathic pain. Despite the increasing use of tDCS, its cellular and molecular basis remains unknown. Astrocytes display a close functional and structural relationship with neurons and have been identified as mediators of neuroprotection in tDCS. Considering the importance of hippocampal glutamatergic neurotransmission in nociceptive pathways, we decided to investigate short-term changes in the hippocampal astrocytes of rats subjected to tDCS, evaluating specific cellular markers (GFAP and S100B), as well as markers of astroglial activity; glutamate uptake, glutamine synthesis by glutamine synthetase (GS) and glutathione content. Data clearly show that a single session of tDCS increases the pain threshold elicited by mechanical and thermal stimuli, as evaluated by von Frey and hot plate tests, respectively. These changes involve inflammatory and astroglial neurochemical changes in the hippocampus, based on specific changes in cell markers, such as S100B and GS. Alterations in S100B were also observed in the cerebrospinal fluid of tDCS animals and, most importantly, specific functional changes (increased glutamate uptake and increased GS activity) were detected in hippocampal astrocytes. These findings contribute to a better understanding of tDCS as a therapeutic strategy for nervous disorders and reinforce the importance of astrocytes as therapeutic targets.


Assuntos
Epilepsia , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Astrócitos/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Ácido Glutâmico/metabolismo , Glutamato-Amônia Ligase/metabolismo
6.
Mol Neurobiol ; 60(9): 5468-5481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314655

RESUMO

Homocysteine (Hcy) is a risk factor for neurodegenerative diseases, such as Alzheimer's Disease, and is related to cellular and tissue damage. In the present study, we verified the effect of Hcy on neurochemical parameters (redox homeostasis, neuronal excitability, glucose, and lactate levels) and the Serine/Threonine kinase B (Akt), Glucose synthase kinase-3ß (GSK3ß) and Glucose transporter 1 (GLUT1) signaling pathway in hippocampal slices, as well as the neuroprotective effects of ibuprofen and rivastigmine alone or in combination in such effects. Male Wistar rats (90 days old) were euthanized and the brains were dissected. The hippocampus slices were pre-treated for 30 min [saline medium or Hcy (30 µM)], then the other treatments were added to the medium for another 30 min [ibuprofen, rivastigmine, or ibuprofen + rivastigmine]. The dichlorofluorescein formed, nitrite and Na+, K+-ATPase activity was increased by Hcy at 30 µM. Ibuprofen reduced dichlorofluorescein formation and attenuated the effect of Hcy. The reduced glutathione content was reduced by Hcy. Treatments with ibuprofen and Hcy + ibuprofen increased reduced glutathione. Hcy at 30 µM caused a decrease in hippocampal glucose uptake and GLUT1 expression, and an increase in Glial Fibrillary Acidic Protein-protein expression. Phosphorylated GSK3ß and Akt levels were reduced by Hcy (30 µM) and co-treatment with Hcy + rivastigmine + ibuprofen reversed these effects. Hcy toxicity on glucose metabolism can promote neurological damage. The combination of treatment with rivastigmine + ibuprofen attenuated such effects, probably by regulating the Akt/GSK3ß/GLUT1 signaling pathway. Reversal of Hcy cellular damage by these compounds may be a potential neuroprotective strategy for brain damage.


Assuntos
Fármacos Neuroprotetores , Ratos , Animais , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rivastigmina/farmacologia , Ibuprofeno/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Ratos Wistar , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Glutationa/metabolismo , Glucose/metabolismo , Homocisteína
7.
Neuroreport ; 34(8): 419-425, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37096764

RESUMO

OBJECTIVES: The hypothalamus plays critical roles in maintaining brain homeostasis and increasing evidence has highlighted astrocytes orchestrating several of hypothalamic functions. However, it remains unclear how hypothalamic astrocytes participate in neurochemical mechanisms associated with aging process, as well as whether these cells can be a target for antiaging strategies. In this sense, the aim of this study is to evaluate the age-dependent effects of resveratrol, a well-characterized neuroprotective compound, in primary astrocyte cultures derived from the hypothalamus of newborn, adult, and aged rats. METHODS: Male Wistar rats (2, 90, 180, and 365 days old) were used in this study. Cultured astrocytes from different ages were treated with 10 and 100 µM resveratrol and cellular viability, metabolic activity, astrocyte morphology, release of glial cell line-derived neurotrophic factor (GDNF), transforming growth factor ß (TGF-ß), tumor necrosis factor α (TNF-α), interleukins (IL-1ß, IL-6, and IL-10), as well as the protein levels of Nrf2 and HO-1 were evaluated. RESULTS: In vitro astrocytes derived from neonatal, adults, and aged animals changed metabolic activity and the release of trophic factors (GDNF and TGF-ß), as well as the inflammatory mediators (TNF-α, IL-1ß, IL-6, and IL-10). Resveratrol prevented these alterations. In addition, resveratrol changed the immunocontent of Nrf2 and HO-1. The results indicated that the effects of resveratrol seem to have a dose- and age-associated glioprotective role. CONCLUSION: These findings demonstrate for the first time that resveratrol prevents the age-dependent underlying functional reprogramming of in vitro hypothalamic astrocytes, reinforcing its antiaging activity, and consequently, its glioprotective role.


Assuntos
Astrócitos , Interleucina-10 , Ratos , Animais , Masculino , Resveratrol/farmacologia , Astrócitos/metabolismo , Ratos Wistar , Interleucina-10/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6/metabolismo , Hipotálamo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas
8.
Artigo em Inglês | MEDLINE | ID: mdl-36565981

RESUMO

Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury. We hypothesize that arundic acid (ONO-2506), which is known as an inhibitor of S100B synthesis and secretion, protects the hippocampal tissue from neuroinflammation and astrocyte dysfunction after status epileptics (SE) induction by Li-pilocarpine in young rats. Herein, we investigated the effects of arundic acid treatment, at time points of 6 or 24 h after the induction of SE by Li-pilocarpine, in young rats. In SE animals, arundic acid was able to prevent the damage induced by Li-pilocarpine in the hippocampus, decreasing neuroinflammatory signaling (reducing IL-1ß, COX2, TLR4 and RAGE contents), astrogliosis (decreasing GFAP and S100B) and astrocytic dysfunction (recovering levels of GSH, glutamine synthetase and connexin-43). Furthermore, arundic acid improved glucose metabolism and reduced the glutamate excitotoxicity found in epilepsy. Our data reinforce the role of astrocytes in epileptogenesis development and the neuroprotective role of arundic acid, which modulates astrocyte function and neuroinflammation in SE animals.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Animais , Astrócitos/metabolismo , Pilocarpina/toxicidade , Doenças Neuroinflamatórias , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Hipocampo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo
9.
J Neuroinflammation ; 19(1): 255, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221097

RESUMO

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1ß and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.


Assuntos
Lipopolissacarídeos , Metformina , Animais , Citocinas/metabolismo , Glucose/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lactatos/efeitos adversos , Lactatos/metabolismo , Lipopolissacarídeos/toxicidade , Metformina/farmacologia , Microglia/metabolismo , Minociclina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Ácido Oxâmico/efeitos adversos , Ácido Oxâmico/metabolismo , Proteínas Quinases/metabolismo , Ratos
10.
Behav Brain Res ; 428: 113880, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35390432

RESUMO

Transcranial direct current stimulation (tDCS) has demonstrated clinical benefits such as analgesia, anti-inflammatory, and neuroprotective effects. However, the mechanisms of action of a single tDCS session are poorly characterized. The present study aimed to evaluate the effects of a single tDCS session on pain sensitivity, inflammatory parameters, and astrocyte activity in naive rats. In the first experiment, sixty-day-old male Wistar rats (n = 95) were tested for mechanical pain threshold (von Frey test). Afterward, animals were submitted to a single bimodal tDCS (0.5 mA, 20 min) or sham-tDCS session. According to the group, animals were re-tested at different time intervals (30, 60, 120 min, or 24 h) after the intervention, euthanized, and the cerebral cortex collected for biochemical analysis. A second experiment (n = 16) was performed using a similar protocol to test the hypotheses that S100B levels in the cerebrospinal fluid (CSF) are altered by tDCS. Elisa assay quantified the levels of tumor necrosis factor-alfa (TNF-α), interleukin-10 (IL10), S100 calcium-binding protein B (S100B), and Glial fibrillary acidic protein (GFAP). Data were analyzed using ANOVA and independent t-test (P < 0.05). Results showed that tDCS decreased pain sensitivity (30 and 60 min), cerebral TNF-α and S100B levels (30 min). CSF S100B levels increased 30 min after intervention. There were no differences in IL10 and GFAP levels. TCDS showed analgesic, anti-inflammatory, and neuroprotective effects in naive animals. Therefore, this non-invasive and inexpensive therapy may potentially be a preemptive alternative to reduce pain, inflammation, and neurodegeneration in situations where patients will undergo medical procedures (e.g., surgery).


Assuntos
Fármacos Neuroprotetores , Estimulação Transcraniana por Corrente Contínua , Animais , Astrócitos/metabolismo , Humanos , Interleucina-10/metabolismo , Masculino , Dor , Limiar da Dor , Ratos , Ratos Wistar , Estimulação Transcraniana por Corrente Contínua/métodos , Fator de Necrose Tumoral alfa/metabolismo
11.
Neurotox Res ; 40(2): 395-409, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106732

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia in humans, with a high social and economic cost. AD is predominantly a sporadic disease, and the intracerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as an AD-like model of dementia. While the etiology of AD remains unknown, changes such as glucose metabolism and activation of receptors for advanced glycation end products (RAGE) seem to underlie its pathogenesis. We hypothesized that methylglyoxal, an endogenous toxin derived from the glycolytic pathway, could be the precursor of advanced glycated end products that activates RAGE and that, consequently, may activate membrane NADPH oxidase (NOX), contributing to the inflammatory status of the model and the disease. We administered ICV-STZ to Wistar rats and evaluated several neurochemical parameters in the hippocampus, particularly glyoxalase 1 (GLO-1) activity, which serves as an index of high levels of methylglyoxal, and the contents of RAGE and NOX-2, the most abundant brain NOX isoform. At the times evaluated (4 and 24 weeks after STZ), we observed cognitive deficit, increased beta-amyloid content, and increased tau phosphorylation. A persistent increase in GLO-1 activity was found, as well as increases in RAGE and NOX-2 contents, suggesting astroglial and microglial commitment. The increase in NOX-2 may reflect elevated microglial activity (confirmed by IBA-1 marker), which may contribute to the synaptic dysfunction and pruning described in the literature, both in this model and AD patients. Furthermore, reinforcing this possibility, we found a reduction in cholinergic communication in the hippocampus (as shown by decreased choline acetyltransferase), a reduction in BDNF, and an increase in TGF-ß, the combination of which may result in synaptic deterioration.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/toxicidade , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Estreptozocina/toxicidade
12.
Neurotoxicology ; 88: 57-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728274

RESUMO

High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1ß and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/efeitos adversos , Gliose/induzido quimicamente , Ácido Glutâmico/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Gliose/patologia , Interleucina-1beta/metabolismo , Masculino , Doenças Neuroinflamatórias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Neurosci Lett ; 751: 135776, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727126

RESUMO

Astrocytes respond to injury by modifying the expression profile of several proteins, including the S100 calcium-binding protein B (S100B), assumed to be a marker as well as a mediator of brain injury. AA is an inhibitor of S100B synthesis and plays a protective role in different models of brain injury, as decreases in S100B expression cause decreases in extracellular S100B. However, S100B mRNA expression, S100B protein content and S100B secretion do not always occur in association; as such, we herein investigated the effect of AA on S100B secretion, using different approaches with three stimulating conditions for S100B secretion, namely, low potassium medium, TNF-α (in hippocampal slices) and LPS exposure (in astrocyte cultures). Our data indicate that AA directly affects S100B secretion, indicating that the extracellular levels of this astroglial protein may be mediating the action of this compound. More importantly, AA had no effect on basal S100B secretion, but inhibited stimulated S100B secretion (stimulated either by the proinflammatory molecules, LPS or TNF-α, or by low potassium medium). Data from hippocampal slices that were directly exposed to AA, or from animals that received the acid by intracerebroventricular infusion, contribute to understanding its neuroprotective effect.


Assuntos
Anti-Inflamatórios/farmacologia , Caprilatos/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32805443

RESUMO

Neuroinflammation has been associated to neurodegenerative disease development, with evidence suggesting that high levels of proinflammatory cytokines promote neuronal dysfunction and death. Therefore, it is necessary to study new compounds that may be used as adjuvant treatments of neurodegenerative diseases by attenuating the inflammatory response in the central nervous system (CNS). The aim of this study was to utilize the lipopolysaccharide (LPS) induction model of neuroinflammation to evaluate the modulation of inflammation by rosmarinic acid (RA) isolated from Blechnum brasiliense in adult zebrafish. First, we investigated the toxicity and antioxidant properties of fractionated B. brasiliense extract (ethyl acetate fraction- EAF) and the isolated RA in zebrafish embryos. Next, we developed a model of neuroinflammation induction by intraperitoneal (i.p.) injection of LPS to observe the RA modulation of proinflammatory cytokines. The median lethal concentration (LC50) calculated was 185.2 ± 1.24 µg/mL for the ethyl acetate fraction (EAF) and 296.0 ± 1.27 µM for RA. The EAF showed free radical inhibition ranging from 23.09% to 63.44% at concentrations of 10-250 µg/mL. The RA presented a concentration-dependent response ranging from 18.24% to 47.63% at 10-250 µM. Furthermore, the RA reduced LPS induction of TNF-α and IL-1ß levels, with the greatest effect observed 6 h after LPS administration. Thus, the data suggested an anti-inflammatory effect of RA isolated from B. brasiliense and reinforced the utility of the new model of neuroinflammation to test the possible neuroprotective effects of novel drugs or compounds.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Encéfalo/efeitos dos fármacos , Cinamatos/farmacologia , Depsídeos/farmacologia , Gleiquênias/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Peixe-Zebra/imunologia , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Ácido Rosmarínico
16.
Mol Neurobiol ; 57(1): 502-512, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31388960

RESUMO

Although the pathogenesis of Alzheimer's disease (AD) remains unclear, some molecular aspects that precede or accompany the deposit of ß-amyloid in senile plaques attract attention, such as calcium dysregulation and neuroinflammation. It has been suggested that the Ca2+/calmodulin-dependent protein phosphatase, calcineurin (CaN), plays an important role in AD pathogenesis. We hypothesized that CaN activation is involved in the inflammatory changes observed in the streptozotocin (STZ)-induced model of AD. We investigated hippocampal inflammatory and CaN changes in Wistar rats in two moments after intracerebroventricular STZ administration: in the first week (early) and fourth week (later on). We found an early (at 1 week) and persistent (at fourth week) increment in the subunit A of CaN, as well as an increase in the major 48 kDa fragment of this subunit. Glial and inflammatory activation were confirmed by changes of IBA-1, TLR-4, glial fibrillary acidic protein (GFAP), and S100B in the hippocampus. Augmented CaN activity was accompanied by reduced phosphorylation of the pro-apoptotic protein BAD, at Ser 136. Importantly, we found an increase in the nuclear translocation of NFAT4 (more associated to astroglial reactivity) in the hippocampus at 1 and 4 weeks in this model. NFAT3 (more associated with neuronal activation) exhibited an early increase, but decreased later on. Taken together, these data contribute to the understanding of neurochemical changes in the STZ model of sporadic AD, and may explain the persistent inflammatory response in AD, which might occur via the proteolytic activation of CaN, and signaling of NFAT mediated by isoform 4, in activated astrocytes.


Assuntos
Calcineurina/metabolismo , Demência/induzido quimicamente , Demência/patologia , Hipocampo/patologia , Inflamação/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Demência/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Injeções Intraventriculares , Masculino , Microglia/patologia , Modelos Biológicos , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Estreptozocina/administração & dosagem , Proteína de Morte Celular Associada a bcl/metabolismo
17.
Mol Neurobiol ; 56(1): 761-762, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29909452

RESUMO

The authors hereby declare that the Figure 4 in page eight of the paper "Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion" authored by Fabrício Nicola and colleagues (DOI: 10.1007/s12035-018-1127-4) was mistakenly included.

18.
Mol Neurobiol ; 56(1): 748-760, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29796991

RESUMO

The transplantation of stem cells from human exfoliated deciduous teeth (SHED) has been studied as a possible treatment strategy for spinal cord injuries (SCIs) due to its potential for promoting tissue protection and functional recovery. The aim of the present study was to investigate the effects of the early transplantation of SHED on glial scar formation and astrocytic reaction after an experimental model of SCI. Wistar rats were spinalized using the NYU Impactor. Animals were randomly distributed into three groups: control (naive) (animal with no manipulation); SCI (receiving laminectomy followed by SCI and treated with vehicle), and SHED (SCI rat treated with intraspinal SHED transplantation, 1 h after SCI). In vitro investigation demonstrated that SHED were able to express mesenchymal stem cells, vimentin and S100B markers, related with neural progenitor and glial cells, respectively. The acute SHED transplantation promoted functional recovery, measured as from the first week after spinal cord contusion by Basso, Beattie, and Bresnahan scale. Twenty-four and 48 h after lesion, flow cytometry revealed a spinal cord vimentin+ cells increment in the SHED group. The increase of vimentin+ cells was confirmed by immunofluorescence. Moreover, the bioavailability of astrocytic proteins such as S100B and Kir4.1 shown to be increased in the spinal cord of SHED group, whereas there was a glial scar reduction, as indicated by ELISA and Western blot techniques. The presented results support that SHED act as a neuroprotector agent after transplantation, probably through paracrine signaling to reduce glial scar formation, inducing tissue plasticity and functional recovery.


Assuntos
Astrócitos/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Esfoliação de Dente/patologia , Dente Decíduo/citologia , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Membro Posterior/fisiopatologia , Humanos , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Traumatismos da Medula Espinal/metabolismo , Vimentina/metabolismo
19.
Neurochem Res ; 44(2): 301-311, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30387069

RESUMO

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, ß-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.


Assuntos
Astrócitos/metabolismo , Hipocampo/efeitos dos fármacos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Bicuculina/farmacologia , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Muscimol/farmacologia , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo
20.
Neural Regen Res ; 13(11): 1945-1952, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30233068

RESUMO

Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the development and progression of several neurological diseases. Likewise, astrocytic reactivity - a well-known process that markedly influences the tissue remodeling after a central nervous system injury - is crucial for tissue remodeling after spinal cord injury (SCI). However, the linkage between the above-mentioned mechanisms after SCI remains poorly understood. We sought to investigate the relation between both glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) (astrocytic reactivity classical markers) and global histone H4 acetylation levels. Sixty-one male Wistar rats (aged ~3 months) were divided into the following groups: sham; 6 hours post-SCI; 24 hours post-SCI; 48 hours post-SCI; 72 hours post-SCI; and 7 days post-SCI. The results suggested that GFAP, but not S100B was associated with global histone H4 acetylation levels. Moreover, global histone H4 acetylation levels exhibited a complex pattern after SCI, encompassing at least three clearly defined phases (first phase: no changes in the 6, 24 and 48 hours post-SCI groups; second phase: increased levels in the 72 hours post-SCI group; and a third phase: return to levels similar to control in the 7 days post-SCI group). Overall, these findings suggest global H4 acetylation levels exhibit distinct patterns of expression during the first week post-SCI, which may be associated with GFAP levels in the perilesional tissue. Current data encourage studies using H4 acetylation as a possible biomarker for tissue remodeling after spinal cord injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...