Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611293

RESUMO

Chitosan exerts a significant influence on various chemical parameters affecting the quality of wine produced using multiple strains of Lachancea thermotolerans. The impact of chitosan on these parameters varies depending on the specific strain studied. We observed that, under the influence of chitosan, the fermentation kinetics accelerated for all examined strains. The formation of lactic acid increased by 41% to 97% across the studied L. thermotolerans strains, depending on the specific strain. This effect also influenced acidity-related parameters such as total acidity, which increased by 28% to 60%, and pH, which experienced a decrease of over 0.5 units. The consumption of malic acid increased by 9% to 20% depending on the specific strain of L. thermotolerans. Nitrogen consumption also rose, as evidenced by all L. thermotolerans strains exhibiting a residual value of Primary Amino Nitrogen (PAN) of below the detection limit, and ammonia consumption increased by 90% to 100%, depending on the strain studied. However, certain parameters such as acetic acid, succinic acid, and glycerol showed contradictory results depending on the strain under investigation. In terms of volatile composition, chitosan supplementation led to increased production of i-butanol by 32% to 65%, 3-methylbutanol by 33% to 63%, and lactic acid ethyl ester by 58% to 91% across all studied strains of L. thermotolerans. Other analyzed aroma compounds exhibited varying changes depending on the specific strain of L. thermotolerans.

2.
Food Chem X ; 21: 101214, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379805

RESUMO

The study explores diverse strains of Lachancea thermotolerans in single-inoculum wine fermentation conditions using synthetic grape must. It aims to analyze the role of the species without external influences like other microorganisms or natural grape must variability. Commercial strains and selected vineyard isolates, untested together previously, are assessed. The research evaluates volatile and non-volatile chemical compounds in final wine, revealing significant strain-based variations. L. thermotolerans notably produces lactic acid and consumes malic acid, exhibiting moderate ethanol levels. The volatile profile displays strain-specific impacts, affecting higher alcohol and ester concentrations compared to S. cerevisiae. These effects vary based on the specific compounds. Using a uniform synthetic must enables direct strain comparisons, eliminating grape-related, environmental, or timing variables in the experiment, facilitating clearer insights into the behavior of L. thermotolerans in wine fermentation. The study compares for the first time all available commercial strains of L. thermotolerans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...