Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35054754

RESUMO

Electrospinning is a perspective method widely suggested for use in bioengineering applications, but the variability in currently available data and equipment necessitates additional research to ascertain the desirable methodology. In this study, we aimed to describe the effects of electrospinning technique alterations on the structural and mechanical properties of (1,7)-polyoxepan-2-one (poly-ε-caprolactone, PCL) scaffolds, such as circumferential and longitudinal stress/strain curves, in comparison with corresponding properties of fresh rat aorta samples. Scaffolds manufactured under different electrospinning modes were analyzed and evaluated using scanning electronic microscopy as well as uniaxial longitudinal and circumferential tensile tests. Fiber diameter was shown to be the most crucial characteristic of the scaffold, correlating with its mechanical properties.

2.
J Biomed Mater Res A ; 110(2): 394-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390309

RESUMO

The aim of this study was to compare the mechanical properties and thermal stability of the venous wall depending on the treatment method used, and, accordingly, on those structural changes in the tissue that this treatment causes. Bovine jugular vein walls (BJVWs) cross-linked with glutaraldehyde (GA), ethylene glycol diglycidyl ether (DE), and Contegra commercial conduit were evaluated using uniaxial stretching [with and without pre-conditioning (PreC)], differential scanning calorimetry, amino acid analysis, and attenuated total reflection infrared spectroscopy. Fresh BJVW was used as a control. It was shown that failure stress in non-PreC GA-treated and DE-treated materials was lower than that in fresh and Contegra counterparts. Contegra samples were the stiffest among the tested materials. Cyclic preloading leads to distortion of the mechanical behavior of this material, which is heterogeneous in composition and structure. The denaturation temperatures (Td ) of all cross-linked BJVWs were higher than the Td of the fresh vein. The microstructures of the tested BJVWs did not exhibit any differences, but the cross-linking density and hydration of the DE-vein were the highest. GA-cross-linking or DE-cross-linking and isopropanol exposure (Contegra) changed the protein secondary structures of the tested materials in different ways. We hypothesized that the protein secondary structure and hydration degree are the main causes of differences in the mechanical properties and thermal stability of BJVW.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Bovinos , Glutaral , Veias Jugulares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...