Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(11): 2731-2736, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872223

RESUMO

Autoimmunity is intrinsically driven by memory T and B cell clones inappropriately targeted at self-antigens. Selective depletion or suppression of self-reactive T cells remains a holy grail of autoimmune therapy, but disease-associated T cell receptors (TCRs) and cognate antigenic epitopes remained elusive. A TRBV9-containing CD8+ TCR motif was recently associated with the pathogenesis of ankylosing spondylitis, psoriatic arthritis and acute anterior uveitis, and cognate HLA-B*27-presented epitopes were identified. Following successful testing in nonhuman primate models, here we report human TRBV9+ T cell elimination in ankylosing spondylitis. The patient achieved remission within 3 months and ceased anti-TNF therapy after 5 years of continuous use. Complete remission has now persisted for 4 years, with three doses of anti-TRBV9 administered per year. We also observed a profound improvement in spinal mobility metrics and the Bath Ankylosing Spondylitis Metrology Index (BASMI). This represents a possibly curative therapy of an autoimmune disease via selective depletion of a TRBV-defined group of T cells. The anti-TRBV9 therapy could potentially be applicable to other HLA-B*27-associated spondyloarthropathies. Such targeted elimination of the underlying cause of the disease without systemic immunosuppression could offer a new generation of safe and efficient therapies for autoimmunity.


Assuntos
Espondilite Anquilosante , Humanos , Epitopos , Antígenos HLA-B , Imunoterapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Espondilite Anquilosante/tratamento farmacológico , Linfócitos T , Inibidores do Fator de Necrose Tumoral/uso terapêutico
2.
F1000Res ; 7: 57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30430004

RESUMO

Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D =15±1 nM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Camelídeos Americanos/imunologia , Receptor ErbB-3/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
3.
Biochemistry ; 57(22): 3167-3175, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29283551

RESUMO

γ-Resorcylate decarboxylase (γ-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of γ-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by γ-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of γ-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn2+ bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of γ-RSD from Rhizobium sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, γ-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to C1 of γ-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of γ-RSD from Rhizobium sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct.


Assuntos
Carboxiliases/química , Sítios de Ligação , Carboxiliases/fisiologia , Catálise , Cristalografia por Raios X , Descarboxilação/fisiologia , Hidroxibenzoatos/metabolismo , Cinética , Elementos Estruturais de Proteínas/fisiologia , Resorcinóis/química , Especificidade por Substrato
4.
J Am Chem Soc ; 138(3): 826-36, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26714575

RESUMO

5-Carboxyvanillate decarboxylase (LigW) catalyzes the conversion of 5-carboxyvanillate to vanillate in the biochemical pathway for the degradation of lignin. This enzyme was shown to require Mn(2+) for catalytic activity and the kinetic constants for the decarboxylation of 5-carboxyvanillate by the enzymes from Sphingomonas paucimobilis SYK-6 (kcat = 2.2 s(-1) and kcat/Km = 4.0 × 10(4) M(-1) s(-1)) and Novosphingobium aromaticivorans (kcat = 27 s(-1) and kcat/Km = 1.1 × 10(5) M(-1) s(-1)) were determined. The three-dimensional structures of both enzymes were determined in the presence and absence of ligands bound in the active site. The structure of LigW from N. aromaticivorans, bound with the substrate analogue, 5-nitrovanillate (Kd = 5.0 nM), was determined to a resolution of 1.07 Å. The structure of this complex shows a remarkable enzyme-induced distortion of the nitro-substituent out of the plane of the phenyl ring by approximately 23°. A chemical reaction mechanism for the decarboxylation of 5-carboxyvanillate by LigW was proposed on the basis of the high resolution X-ray structures determined in the presence ligands bound in the active site, mutation of active site residues, and the magnitude of the product isotope effect determined in a mixture of H2O and D2O. In the proposed reaction mechanism the enzyme facilitates the transfer of a proton to C5 of the substrate prior to the decarboxylation step.


Assuntos
Biocatálise , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Estrutura Molecular , Sphingomonadaceae/enzimologia , Sphingomonas/enzimologia , Especificidade por Substrato
5.
Nat Prod Commun ; 8(1): 85-98, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23472467

RESUMO

The flavonoids are a structurally diverse class of natural products that exhibit a broad spectrum of biochemical activities. The flavones are one of the most studied flavonoid subclasses due to their presence in dietary plants and their potential to protect human cells from reactive oxygen species (ROS). Several flavone compounds also mediate beneficial actions by direct binding to protein receptors and regulatory enzymes. There is current interest in using Quantitative Structure Activity Relationships (QSARs) to guide drug development based on flavone lead structures. This approach is most informative when it involves the use of accurate physical descriptors. The Abraham summation solute hydrogen bonding acidity (A) is a descriptor in the general solvation equation. It defines the tendency of a molecule to act as a hydrogen bond donor, or acid, when surrounded by solvent molecules that are hydrogen bonding acceptors, or bases. As a linear free energy relationship, it is useful for predicting the absorption and uptake of drug molecules. A previously published method, involving nuclear magnetic resonance (NMR) spectroscopy, was used to evaluate A for the monohydroxyflavones (MHFs). Values of A ranged from 0.02, for 5-hydroxyflavone, to 0.69 for 4'-hydroxyflavone. The ability to examine separate NMR signals for individual hydroxyl groups allowed the investigation of intramolecular interactions between functional groups. The value of A for the position 7 hydroxyl group of 7-hydroxyflavone was 0.67. The addition of a position 5 hydroxyl group (in 5,7-dihydroxyflavone) increased the value of A for the position 7 hydroxyl group to 0.76. Values of A for MHFs were also calculated by the program ACD-Absolve and these agreed well with values measured by NMR. These results should facilitate more accurate estimation of the values of A for structurally complex flavones with pharmacological activities.


Assuntos
Flavonas/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética
6.
Org Lett ; 14(6): 1370-3, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22360622

RESUMO

We present a fortuitous discovery of enhanced shape-selective recognition of anion guests that stems from a complexation-induced conformational change in porphyrin hosts upon anion binding. Porphyrin hosts reported here exist in a conformation that is not favorable to guest binding. Anions that bind strongly are those that can induce a conformational change in the host to allow guest binding. Furthermore, guests that mimic the shape of the newly formed pocket bind the strongest.


Assuntos
Porfirinas/química , Ânions , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...