Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(4): 587-604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737322

RESUMO

The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.

2.
Heliyon ; 10(7): e27909, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571619

RESUMO

Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.

3.
Diagnostics (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370986

RESUMO

It has been validated beyond doubt that High-Resolution Computed Tomography (HRCT) chest and to some extent chest radiographs have a role in corona virus disease-19 (COVID-19). Much less is known about the role of lung ultrasonography (LUS) in COVID-19. In this paper, our main purpose was to gauge the relationship between LUS and chest HRCT in reverse transcriptase polymerase chain reaction (RT-PCR) documented cases of COVID-19, as well as in those with high suspicion of COVID-19 with negative RT-PCR. It was a prospective study carried out at our tertiary care hospital, namely, SKIMS Soura. The total number of patients in this study were 152 (200 patients were selected out of which only 152 had undergone both LUS and chest HRCT). The patients were subjected to both LUS and chest HRCT. The radiologist who performed LUS was blinded to clinical findings and HRCT was evaluated by a radiologist with about a decade of experience. The LUS findings compatible with the disease were subpleural consolidations, B-lines and irregular pleural lines. Findings that were compatible with COVID-19 on chest HRCT were bibasilar, subpleural predominant ground glass opacities, crazy paving and consolidations. COVID-19-positive patients were taken up for chest HRCT for disease severity stratification and were also subjected to LUS. On HRCT chest, the imaging abnormalities compatible with COVID-19 were evident in 110 individuals (72.37%), and on Lung Ultrasound they were observed in 120 individuals (78.95%). Imaging of COVID-19 patients assessed by both LUS and HRCT chest,, showed a positive correlation (p < 0.0001). The study revealed a sensitivity of 88%, a specificity of 76.62%, a positive predictive value of 78.57% and a negative predictive value of 86.76%. None of the individuals with a diagnosis of COVID-19 on HRCT were missed on LUS. An excellent correlation was derived between the LUS score and CT total severity score (p < 0.0001 with a kappa of 0.431). Similar precision compared with chest HRCT in the detection of chest flaws in COVID-19 patients was obtained on LUS.

4.
Medicina (Kaunas) ; 59(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984473

RESUMO

Background and Objectives: In December 2019, a flu-like illness began in the Chinese city of Wuhan. This sickness mainly affected the lungs, ranging from a minor respiratory tract infection to a severe lung involvement that mimicked the symptoms of Severe Acute Respiratory Syndrome (SARS). The World Health Organization (WHO) labelled this sickness as a pandemic in March 2020, after it quickly spread throughout the world population. It became clear, as the illness progressed, that people with concomitant illnesses, particularly diabetes mellitus (DM) and other immunocompromised states, were outmatched by this illness. This study was aimed to evaluate the correlation between Computed Tomographic Severity Score (CTSS) and underlying diabetes mellitus in coronavirus disease (COVID)-19 patients. Materials and Methods: This was a hospital-based prospective study in which a total of 152 patients with reverse transcriptase polymerase chain reaction (RT-PCR) positive COVID status who underwent high-resolution computed tomography (HRCT) of the chest were evaluated and categorized into mild, moderate and severe cases based on the extent of lung parenchymal involvement. A total score from 0-25 was given, based on the magnitude of lung involvement. Statistical analysis was used to derive a correlation between DM and CTSS, if any. Results: From our study, it was proven that patients with underlying diabetic status had more severe involvement of the lung as compared to non-diabetics, and it was found to be statistically significant (p = 0.024). Conclusions: On analysis of what we found based on the study, it can be concluded that patients with underlying diabetic status had a more prolonged and severe illness in comparison to non-diabetics, with higher CTSS in diabetics than in non-diabetics.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/complicações , Estudos Prospectivos , SARS-CoV-2 , Pulmão , Diabetes Mellitus/epidemiologia
5.
Saudi Pharm J ; 31(1): 1-13, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685305

RESUMO

Trigonella foenum-graecum has been extensively used for centuries in traditional medicine systems for the cure of health ailments including diabetes. Improving the medicinal attributes of plants through the elicitation strategy is gaining great interest in the recent past. In the current study, an attempt is made to reveal the role and possible mechanism of action of vitamin C elicit phytochemical-rich aqueous extract of 4th day germinated IM6 genotype fenugreek sprouts in the form of lyophilized powder (IM6E) under both in vitro and in vivo conditions. The IM6E demonstrated strong α-glucosidase activity (95.24 %) and moderate α-amylase and invertase inhibition activities under in vitro conditions. The High Performance Thin Layer Chromatography (HPTLC) based analysis demonstrated that IM6E possess significantly higher concentration of phenolic phytochemical quercetin (0.148 %) as compared to diosgenin and trigonelline bioactive anti-diabetic nutraceuticals. In normal rats after loading with glucose and sucrose, the IM6E administration in a dose-dependent manner significantly reduced the post-prandial hyperglycemia, in a similar fashion as the anti-diabetic drug voglibose as evident from the area under curves (AUC) of oral glucose tolerance test (OGTT) and oral sucrose tolerance test (OSTT) tests. The administration of IM6E in streptozotocin (STZ) induced diabetic rats drastically improved the antioxidant activity of plasma in them as determined by Ferric Reducing Ability of Plasma (FRAP) and the effect was found to be dose-dependent. The oral administration of IM6E in diabetic rats normalized almost all the deregulated biochemical markers like liver enzymes, lipids and significantly decreased higher blood glucose levels with increasing insulin levels as compared to diabetic control. The best concentration of IM6E was found to be 300 mg/kg b.w after 21 days of experimentation. The intra-peritoneal glucose tolerance test (IPGTT) in diabetic rats responded very well to IM6E treatment and 100 mg/kg.b.w. behaved almost like the administration of 0.5U insulin/kg bw, and thus indicating the insulinotropic nature of IM6E. Our findings clearly reveal the use of IM6E for diabetes management and at the same it possesses great potential when combined with voglibose to ameliorate diabetes and its associated complications to a greater extent due to synergistic effects as compared to monotherapy. However, more clinical trials need to be performed before recommending IM6E as an anti-diabetic alternative medicine.

6.
Plants (Basel) ; 11(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35270146

RESUMO

Many viruses have been found associated with apple mosaic disease in different parts of the world. In order to reveal and characterize the viruses and viroids in symptomatic apple plants, next-generation sequencing (RNA seq.) of rRNA-depleted total RNA using Illumina Hiseq2500 was applied to two cultivars, Oregon Spur and Golden Delicious, with symptoms of mosaic and necrosis and one cultivar, Red Fuji, which was asymptomatic. The RNA sequencing detected five viruses, viz., apple necrotic mosaic virus (ApNMV), apple mosaic virus (ApMV), apple stem grooving virus (ASGV) and apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), and one viroid i.e., apple hammerhead viroid (AHVd). RT-PCR amplification and sequencing also confirmed the presence of all these five viruses and viroids detected in HTS of total RNA. The complete genomes of five viruses and AHVd were reconstructed. The phylogenetic analysis of these viruses and AHVd revealed genetic diversity by forming subclusters with isolates from other countries. Recombination events were observed in all five viruses while single-nucleotide variants were detected only in ApMV and ApNMV. The absence of ApMV and ApNMV in asymptomatic samples from the same cultivars in an RT-PCR assay indicated that these two viruses are associated with mosaic disease of apples in India. This is the first viral genome analysis of symptomatic and asymptomatic apple plants and the first report of genome characterization of viruses associated with apple mosaic disease from India. High-throughput RNA sequencing is a powerful tool to characterize the genome of viruses and viroids in plants previously undetected by conventional methods. This would also help in the indexing and certification of large-scale germplasm.

7.
Saudi J Biol Sci ; 28(12): 7550-7560, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867059

RESUMO

One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3-5); inoculum size(1-5 mL) and fermentation time (3-15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...